RESUMO
Haematopoiesis in the bone marrow (BM) maintains blood and immune cell production throughout postnatal life. Haematopoiesis first emerges in human BM at 11-12 weeks after conception1,2, yet almost nothing is known about how fetal BM (FBM) evolves to meet the highly specialized needs of the fetus and newborn. Here we detail the development of FBM, including stroma, using multi-omic assessment of mRNA and multiplexed protein epitope expression. We find that the full blood and immune cell repertoire is established in FBM in a short time window of 6-7 weeks early in the second trimester. FBM promotes rapid and extensive diversification of myeloid cells, with granulocytes, eosinophils and dendritic cell subsets emerging for the first time. The substantial expansion of B lymphocytes in FBM contrasts with fetal liver at the same gestational age. Haematopoietic progenitors from fetal liver, FBM and cord blood exhibit transcriptional and functional differences that contribute to tissue-specific identity and cellular diversification. Endothelial cell types form distinct vascular structures that we show are regionally compartmentalized within FBM. Finally, we reveal selective disruption of B lymphocyte, erythroid and myeloid development owing to a cell-intrinsic differentiation bias as well as extrinsic regulation through an altered microenvironment in Down syndrome (trisomy 21).
Assuntos
Células da Medula Óssea/citologia , Medula Óssea , Síndrome de Down/sangue , Síndrome de Down/imunologia , Feto/citologia , Hematopoese , Sistema Imunitário/citologia , Linfócitos B/citologia , Células Dendríticas/citologia , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Células Endoteliais/patologia , Eosinófilos/citologia , Células Eritroides/citologia , Granulócitos/citologia , Humanos , Imunidade , Células Mieloides/citologia , Células Estromais/citologiaRESUMO
Definitive haematopoiesis in the fetal liver supports self-renewal and differentiation of haematopoietic stem cells and multipotent progenitors (HSC/MPPs) but remains poorly defined in humans. Here, using single-cell transcriptome profiling of approximately 140,000 liver and 74,000 skin, kidney and yolk sac cells, we identify the repertoire of human blood and immune cells during development. We infer differentiation trajectories from HSC/MPPs and evaluate the influence of the tissue microenvironment on blood and immune cell development. We reveal physiological erythropoiesis in fetal skin and the presence of mast cells, natural killer and innate lymphoid cell precursors in the yolk sac. We demonstrate a shift in the haemopoietic composition of fetal liver during gestation away from being predominantly erythroid, accompanied by a parallel change in differentiation potential of HSC/MPPs, which we functionally validate. Our integrated map of fetal liver haematopoiesis provides a blueprint for the study of paediatric blood and immune disorders, and a reference for harnessing the therapeutic potential of HSC/MPPs.
Assuntos
Feto/citologia , Hematopoese , Fígado/citologia , Fígado/embriologia , Células Sanguíneas/citologia , Microambiente Celular , Feminino , Feto/metabolismo , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Fígado/metabolismo , Tecido Linfoide/citologia , Análise de Célula Única , Células-Tronco/metabolismoRESUMO
OBJECTIVES: Extracellular vesicles (EVs) are abundant in body fluids, contributing to intercellular signalling by transferring cargo that includes microRNAs (miRs) - themselves implicated in pathobiology. For the first time we evaluated the potential of EV miRs to contribute diagnostic information in early RA, predict methotrexate (MTX) efficacy or shed light on the drug's mechanism of action. METHODS: 798 miRs isolated from serum-derived EVs of 46 patients with untreated RA, 23 with untreated polymyalgia rheumatica (PMR; inflammatory disease control group) and 12 in whom significant inflammatory disease had been excluded (non-inflammatory controls; NICs) were profiled (Nanostring); the same measurements were made for RA patients after 6 months' MTX treatment. Analyses took multiple testing into account. RESULTS: 28 EV miRs were robustly differentially expressed between early RA (but not PMR) patients and NICs after correction for age and sex, suggesting discriminatory value. Cross-validated partial least squared-discriminant analysis also indicated the predictive potential of a distinct baseline EV miR signature with respect to MTX-induced remission at 6 months. The change in expression of 13 miRs over the course of MTX treatment differed significantly between responders and non-responders, and four of those exhibiting increased relative abundance amongst responders have known roles in regulating the pathogenic potential of synovial fibroblasts, namely miR-212-3p, miR-338-5p, miR-410-3p, and miR-537. CONCLUSION: Our data highlight the potential of serum EV miRs as diagnostic and therapeutic biomarkers, highlighting a novel potential mechanism via which MTX may exert its therapeutic effect in early RA that warrants further investigation.
RESUMO
The skin confers biophysical and immunological protection through a complex cellular network established early in embryonic development. We profiled the transcriptomes of more than 500,000 single cells from developing human fetal skin, healthy adult skin, and adult skin with atopic dermatitis and psoriasis. We leveraged these datasets to compare cell states across development, homeostasis, and disease. Our analysis revealed an enrichment of innate immune cells in skin during the first trimester and clonal expansion of disease-associated lymphocytes in atopic dermatitis and psoriasis. We uncovered and validated in situ a reemergence of prenatal vascular endothelial cell and macrophage cellular programs in atopic dermatitis and psoriasis lesional skin. These data illustrate the dynamism of cutaneous immunity and provide opportunities for targeting pathological developmental programs in inflammatory skin diseases.
Assuntos
Dermatite Atópica/embriologia , Dermatite Atópica/patologia , Psoríase/embriologia , Psoríase/patologia , Pele/embriologia , Animais , Atlas como Assunto , Movimento Celular , Conjuntos de Dados como Assunto , Células Dendríticas/imunologia , Dermatite Atópica/imunologia , Fármacos Dermatológicos/farmacologia , Humanos , Imunidade Inata/genética , Metotrexato/farmacologia , Camundongos , Fagócitos/imunologia , Psoríase/imunologia , Análise de Célula Única , Pele/citologia , Pele/imunologia , Linfócitos T/imunologia , TranscriptomaRESUMO
Environmental monitoring in public spaces can be used to identify surfaces contaminated by persons with COVID-19 and inform appropriate infection mitigation responses. Research groups have reported detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) on surfaces days or weeks after the virus has been deposited, making it difficult to estimate when an infected individual may have shed virus onto a SARS-CoV-2 positive surface, which in turn complicates the process of establishing effective quarantine measures. In this study, we determined that reverse transcription-quantitative polymerase chain reaction (RT-qPCR) detection of viral RNA from heat-inactivated particles experiences minimal decay over seven days of monitoring on eight out of nine surfaces tested. The properties of the studied surfaces result in RT-qPCR signatures that can be segregated into two material categories, rough and smooth, where smooth surfaces have a lower limit of detection. RT-qPCR signal intensity (average quantification cycle (Cq)) can be correlated to surface viral load using only one linear regression model per material category. The same experiment was performed with infectious viral particles on one surface from each category, with essentially identical results. The stability of RT-qPCR viral signal demonstrates the need to clean monitored surfaces after sampling to establish temporal resolution. Additionally, these findings can be used to minimize the number of materials and time points tested and allow for the use of heat-inactivated viral particles when optimizing environmental monitoring methods.
RESUMO
Environmental monitoring in public spaces can be used to identify surfaces contaminated by persons with coronavirus disease 2019 (COVID-19) and inform appropriate infection mitigation responses. Research groups have reported detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on surfaces days or weeks after the virus has been deposited, making it difficult to estimate when an infected individual may have shed virus onto a SARS-CoV-2-positive surface, which in turn complicates the process of establishing effective quarantine measures. In this study, we determined that reverse transcription-quantitative PCR (RT-qPCR) detection of viral RNA from heat-inactivated particles experiences minimal decay over 7 days of monitoring on eight out of nine surfaces tested. The properties of the studied surfaces result in RT-qPCR signatures that can be segregated into two material categories, rough and smooth, where smooth surfaces have a lower limit of detection. RT-qPCR signal intensity (average quantification cycle [Cq]) can be correlated with surface viral load using only one linear regression model per material category. The same experiment was performed with untreated viral particles on one surface from each category, with essentially identical results. The stability of RT-qPCR viral signal demonstrates the need to clean monitored surfaces after sampling to establish temporal resolution. Additionally, these findings can be used to minimize the number of materials and time points tested and allow for the use of heat-inactivated viral particles when optimizing environmental monitoring methods. IMPORTANCE Environmental monitoring is an important tool for public health surveillance, particularly in settings with low rates of diagnostic testing. Time between sampling public environments, such as hospitals or schools, and notifying stakeholders of the results should be minimal, allowing decisions to be made toward containing outbreaks of coronavirus disease 2019 (COVID-19). The Safer At School Early Alert program (SASEA) (https://saseasystem.org/), a large-scale environmental monitoring effort in elementary school and child care settings, has processed >13,000 surface samples for SARS-CoV-2, detecting viral signals from 574 samples. However, consecutive detection events necessitated the present study to establish appropriate response practices around persistent viral signals on classroom surfaces. Other research groups and clinical labs developing environmental monitoring methods may need to establish their own correlation between RT-qPCR results and viral load, but this work provides evidence justifying simplified experimental designs, like reduced testing materials and the use of heat-inactivated viral particles.
RESUMO
The thymus provides a nurturing environment for the differentiation and selection of T cells, a process orchestrated by their interaction with multiple thymic cell types. We used single-cell RNA sequencing to create a cell census of the human thymus across the life span and to reconstruct T cell differentiation trajectories and T cell receptor (TCR) recombination kinetics. Using this approach, we identified and located in situ CD8αα+ T cell populations, thymic fibroblast subtypes, and activated dendritic cell states. In addition, we reveal a bias in TCR recombination and selection, which is attributed to genomic position and the kinetics of lineage commitment. Taken together, our data provide a comprehensive atlas of the human thymus across the life span with new insights into human T cell development.