Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 31(11): 5102-5110, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28768722

RESUMO

Macrophage migration inhibitory factor (MIF) is a key proinflammatory mediator that we have previously shown to be associated with an aggressive clinical phenotype in cystic fibrosis. It possesses unique tautomerase enzymatic activity. However, to date, no human-derived substrate has been identified that has the capacity to interact with this cytokine's unique tautomerase activity. This led us to hypothesize that MIF may have the capacity to interact with external substrates. We describe for the first time how Pseudomonas aeruginosa can utilize human recombinant MIF (rMIF) to significantly (P < 0.01) enhance its endogenous biofilm formation. Our in vivo studies demonstrate that utilizing a small-molecular-weight inhibitor targeting MIF's tautomerase activity (SCD-19) significantly reduces the inflammatory response in a murine pulmonary chronic P. aeruginosa model. In addition, we show that in in vitro experiments, pretreatment of P. aeruginosa with rMIF is associated with reduced bacterial killing by tobramycin. Our novel findings support the concept of an anti-MIF strategy that targets this enzymatic activity as a potential future antibacterial therapeutic approach.-Tynan, A., Mawhinney, L., Armstrong, M. E., O'Reilly, C., Kennedy, S., Caraher, E., Jülicher, K., O'Dwyer, D., Maher, L., Schaffer, K., Fabre, A., McKone, E. F., Leng, L., Bucala, R., Bernhagen, J., Cooke, G., Donnelly, S. C. Macrophage migration inhibitory factor enhances Pseudomonas aeruginosa biofilm formation, potentially contributing to cystic fibrosis pathogenesis.


Assuntos
Fibrose Cística/metabolismo , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Pseudomonas aeruginosa/fisiologia , Animais , Biofilmes/crescimento & desenvolvimento , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Modelos Animais de Doenças , Oxirredutases Intramoleculares/farmacologia , Fatores Inibidores da Migração de Macrófagos/farmacologia , Camundongos , Proteínas Recombinantes/farmacologia , Tobramicina/farmacologia
2.
Med Res Rev ; 36(3): 440-60, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26777977

RESUMO

Strong evidence has been presented linking chronic inflammation to the onset and pathogenesis of cancer. The multifunctional pro-inflammatory protein macrophage migration inhibitory factor (MIF) occupies a central role in the inflammatory pathway and has been implicated in the tumorigenesis, angiogenesis, and metastasis of many cancer phenotypes. This review highlights the current state of the art, which presents MIF, and the second member of the MIF structural superfamily, D-DT (MIF2), as significant mediators in the inflammatory-cancer axis. Although the mechanism by which MIF asserts its biological activity has yet to be fully understood, it has become clear in recent years that for certain phenotypes of cancer, MIF represents a valid therapeutic target. Current research efforts have focused on small molecule approaches that target MIF's unique tautomerase active site and neutralization of MIF with anti-MIF antibodies. These approaches have yielded promising results in a number of preclinical murine cancer models and have helped to increase our understanding of MIF biological activity. More recently, MIF's involvement in a number of key protein-protein interactions, such as with CD74 and HSP90, has been highlighted and provides a novel platform for the development of anti-MIF chemotherapeutic strategies in the future.


Assuntos
Oxirredutases Intramoleculares/efeitos dos fármacos , Fatores Inibidores da Migração de Macrófagos/efeitos dos fármacos , Neoplasias/terapia , Humanos , Oxirredutases Intramoleculares/química , Fatores Inibidores da Migração de Macrófagos/química , Neoplasias/metabolismo
3.
Mol Med ; 20: 729-35, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25826675

RESUMO

The cytokine macrophage migration inhibitory factor (MIF) possesses unique tautomerase enzymatic activity, which contributes to the biological functional activity of MIF. In this study, we investigated the effects of blocking the hydrophobic active site of the tautomerase activity of MIF in the pathogenesis of lung cancer. To address this, we initially established a Lewis lung carcinoma (LLC) murine model in Mif-KO and wild-type (WT) mice and compared tumor growth in a knock-in mouse model expressing a mutant MIF lacking enzymatic activity (Mif (P1G)). Primary tumor growth was significantly attenuated in both Mif-KO and Mif (P1G) mice compared with WT mice. We subsequently undertook a structure-based, virtual screen to identify putative small molecular weight inhibitors specific for the tautomerase enzymatic active site of MIF. From primary and secondary screens, the inhibitor SCD-19 was identified, which significantly attenuated the tautomerase enzymatic activity of MIF in vitro and in biological functional screens. In the LLC murine model, SCD-19, given intraperitoneally at the time of tumor inoculation, was found to significantly reduce primary tumor volume by 90% (p < 0.001) compared with the control treatment. To better replicate the human disease scenario, SCD-19 was given when the tumor was palpable (at d 7 after tumor inoculation) and, again, treatment was found to significantly reduce tumor volume by 81% (p < 0.001) compared with the control treatment. In this report, we identify a novel inhibitor that blocks the hydrophobic pocket of MIF, which houses its specific tautomerase enzymatic activity, and demonstrate that targeting this unique active site significantly attenuates lung cancer growth in in vitro and in vivo systems.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Oxirredutases Intramoleculares/antagonistas & inibidores , Isocumarinas/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Linhagem Celular , Dinoprostona/metabolismo , Feminino , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Isocumarinas/farmacologia , Lipopolissacarídeos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Carga Tumoral/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
4.
Nanomedicine (Lond) ; 15(30): 2933-2953, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33241979

RESUMO

Aim: Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine, which has been shown to promote disease severity in cystic fibrosis. Methods: In this study, aerosolized drug-loaded nanoparticles containing SCD-19, an inhibitor of MIF's tautomerase enzymatic activity, were developed and characterized. Results: The aerosolized nanoparticles had an optimal droplet size distribution for deep lung deposition, with a high degree of biocompatibility and significant cellular uptake. Conclusion: For the first time, we have developed an aerosolized nano-formulation against MIF's enzymatic activity that achieved a significant reduction in the inflammatory response of macrophages, and inhibited Pseudomonas aeruginosa biofilm formation on airway epithelial cells. This represents a potential novel adjunctive therapy for the treatment of P. aeruginosa infection in cystic fibrosis.


Assuntos
Fatores Inibidores da Migração de Macrófagos , Nanopartículas , Preparações Farmacêuticas , Infecções por Pseudomonas , Biofilmes , Humanos , Inflamação/tratamento farmacológico , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA