Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 129, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472514

RESUMO

Recent work putatively linked a rare genetic variant of the chaperone Resistant to Inhibitors of acetylcholinesterase (RIC3) (NM_024557.4:c.262G > A, NP_078833.3:p.G88R) to a unique ability to speak backwards, a language skill that is associated with exceptional working memory capacity. RIC3 is important for the folding, maturation, and functional expression of α7 nicotinic acetylcholine receptors (nAChR). We compared and contrasted the effects of RIC3G88R on assembly, cell surface expression, and function of human α7 receptors using fluorescent protein tagged α7 nAChR and Förster resonance energy transfer (FRET) microscopy imaging in combination with functional assays and 125I-α-bungarotoxin binding. As expected, the wild-type RIC3 protein was found to increase both cell surface and functional expression of α7 receptors. In contrast, the variant form of RIC3 decreased both. FRET analysis showed that RICG88R increased the interactions between RIC3 and α7 protein in the endoplasmic reticulum. These results provide interesting and novel data to show that a RIC3 variant alters the interaction of RIC3 and α7, which translates to decreased cell surface and functional expression of α7 nAChR.


Assuntos
Receptores Nicotínicos , Humanos , Acetilcolinesterase/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Membrana Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Receptores Nicotínicos/genética , Fala
2.
Hum Mol Genet ; 29(14): 2325-2336, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32543656

RESUMO

Congenital myasthenic syndromes (CMS) are characterized by fatigable muscle weakness resulting from impaired neuromuscular transmission. ß2-adrenergic agonists are an effective treatment for DOK7-CMS. DOK7 is a component within the AGRN-LRP4-MUSK-DOK7 signalling pathway that is key for the formation and maintenance of the synaptic structure of the neuromuscular junction (NMJ). The precise mechanism of action of ß2-adrenergic agonists at the NMJ is not fully understood. In this study, we investigated whether ß2-adrenergic agonists improve both neurotransmission and structural integrity of the NMJ in a mouse model of DOK7-CMS. Ex-vivo electrophysiological techniques and microscopy of the NMJ were used to study the effect of salbutamol, a ß2-adrenergic agonist, on synaptic structure and function. DOK7-CMS model mice displayed a severe phenotype with reduced weight gain and perinatal lethality. Salbutamol treatment improved weight gain and survival in DOK7 myasthenic mice. Model animals had fewer active NMJs, detectable by endplate recordings, compared with age-matched wild-type littermates. Salbutamol treatment increased the number of detectable NMJs during endplate recording. Correspondingly, model mice had fewer acetylcholine receptor-stained NMJs detected by fluorescent labelling, but following salbutamol treatment an increased number were detectable. The data demonstrate that salbutamol can prolong survival and increase NMJ number in a severe model of DOK7-CMS.


Assuntos
Albuterol/farmacologia , Proteínas Musculares/genética , Síndromes Miastênicas Congênitas/tratamento farmacológico , Junção Neuromuscular/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/patologia , Junção Neuromuscular/metabolismo , Gravidez , Receptores Colinérgicos/genética , Transdução de Sinais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
3.
Proc Natl Acad Sci U S A ; 116(42): 21228-21235, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31570625

RESUMO

Charge selectivity forms the basis of cellular excitation or inhibition by Cys-loop ligand-gated ion channels (LGICs), and is essential for physiological receptor function. There are no reports of naturally occurring mutations in LGICs associated with the conversion of charge selectivity. Here, we report on a CHRNA1 mutation (α1Leu251Arg) in a patient with congenital myasthenic syndrome associated with transformation of the muscle acetylcholine receptor (AChR) into an inhibitory channel. Performing patch-clamp experiments, the AChR was found to be converted into chloride conductance at positive potentials, whereas whole-cell currents at negative potentials, although markedly reduced, were still carried by sodium. Umbrella sampling molecular dynamics simulations revealed constriction of the channel pore radius to 2.4 Å as a result of the mutation, which required partial desolvation of the ions in order to permeate the pore. Ion desolvation was associated with an energetic penalty that was compensated for by the favorable electrostatic interaction of the positively charged arginines with chloride. These findings reveal a mechanism for the transformation of the muscle AChR into an inhibitory channel in a clinical context.


Assuntos
Acetilcolina/metabolismo , Cloretos/metabolismo , Músculos/metabolismo , Mutação/genética , Receptores Colinérgicos/metabolismo , Linhagem Celular , Células HEK293 , Humanos , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/fisiologia , Síndromes Miastênicas Congênitas/metabolismo , Técnicas de Patch-Clamp/métodos , Receptores Nicotínicos/metabolismo , Sódio/metabolismo
4.
Hum Mutat ; 41(3): 619-631, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31765060

RESUMO

MUSK encodes the muscle-specific receptor tyrosine kinase (MuSK), a key component of the agrin-LRP4-MuSK-DOK7 signaling pathway, which is essential for the formation and maintenance of highly specialized synapses between motor neurons and muscle fibers. We report a patient with severe early-onset congenital myasthenic syndrome and two novel missense mutations in MUSK (p.C317R and p.A617V). Functional studies show that MUSK p.C317R, located at the frizzled-like cysteine-rich domain of MuSK, disrupts an integral part of MuSK architecture resulting in ablated MuSK phosphorylation and acetylcholine receptor (AChR) cluster formation. MUSK p.A617V, located at the kinase domain of MuSK, enhances MuSK phosphorylation resulting in anomalous AChR cluster formation. The identification and evidence for pathogenicity of MUSK mutations supported the initiation of treatment with ß2-adrenergic agonists with a dramatic improvement of muscle strength in the patient. This work suggests uncharacterized mechanisms in which control of the precise level of MuSK phosphorylation is crucial in governing synaptic structure.


Assuntos
Mutação , Síndromes Miastênicas Congênitas/diagnóstico , Síndromes Miastênicas Congênitas/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Colinérgicos/genética , Sinapses/genética , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Agonistas de Receptores Adrenérgicos beta 2/uso terapêutico , Alelos , Substituição de Aminoácidos , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Análise Mutacional de DNA , Feminino , Marcação de Genes , Humanos , Camundongos , Modelos Moleculares , Conformação Molecular , Proteínas Musculares/metabolismo , Síndromes Miastênicas Congênitas/tratamento farmacológico , Síndromes Miastênicas Congênitas/metabolismo , Linhagem , Fosforilação , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Colinérgicos/química , Receptores Colinérgicos/metabolismo , Relação Estrutura-Atividade , Sinapses/metabolismo
5.
J Neurol Neurosurg Psychiatry ; 91(5): 526-532, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32165373

RESUMO

OBJECTIVE: Direct inhibition of acetylcholine receptor (AChR) function by autoantibodies (Abs) is considered a rare pathogenic mechanism in myasthenia gravis (MG), but is usually studied on AChRs expressed in cell lines, rather than tightly clustered by the intracellular scaffolding protein, rapsyn, as at the intact neuromuscular junction. We hypothesised that clustered AChRs would provide a better target for investigating the functional effects of AChR-Abs. METHODS: Acetylcholine-induced currents were measured using whole-cell patch clamping and a fast perfusion system to assess fast (<2 min) functional effects of the serum samples. The sensitivity, specificity and rapidity of the system were first demonstrated by applying maternal AChR-Ab positive plasmas known to inhibit fetal AChR function in TE671 cells. Eleven previously untested AChR-Ab positive MG sera, 10 AChR-Ab negative MG sera and 5 healthy control sera were then applied to unclustered and rapsyn-clustered human adult AChRs in CN21 cells. RESULTS: The maternal AChR-Ab positive plasmas reduced fetal AChR currents, but not adult AChR currents, by >80% within 100 s. Only 2/11 AChR-Ab positive sera inhibited AChR currents in unclustered AChRs, but 6/11 AChR-Ab positive sera compared with none of the 10 AChR-Ab negative sera (p=0.0020) inhibited rapsyn-clustered AChR currents, and current inhibition by the AChR-Ab positive sera was greater when the AChRs were clustered (p=0.0385). None of the sera had detectable effects on desensitisation or recovery from desensitisation. CONCLUSION: These results show that antibodies can inhibit AChR function rapidly and demonstrate the importance of clustering in exploring pathogenic disease mechanisms of MG Abs.


Assuntos
Autoanticorpos/imunologia , Proteínas Musculares/imunologia , Miastenia Gravis/imunologia , Receptores Colinérgicos/imunologia , Adolescente , Adulto , Idoso , Bungarotoxinas/farmacologia , Linhagem Celular , Fenômenos Eletrofisiológicos , Feminino , Fluoxetina/farmacologia , Humanos , Masculino , Microscopia de Fluorescência , Pessoa de Meia-Idade , Miastenia Gravis/etiologia , Técnicas de Patch-Clamp , Receptores Colinérgicos/efeitos dos fármacos , Adulto Jovem
6.
Brain ; 142(12): 3713-3727, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31633155

RESUMO

Acetylcholine receptor deficiency is the most common form of the congenital myasthenic syndromes, a heterogeneous collection of genetic disorders of neuromuscular transmission characterized by fatiguable muscle weakness. Most patients with acetylcholine receptor deficiency respond well to acetylcholinesterase inhibitors; however, in some cases the efficacy of acetylcholinesterase inhibitors diminishes over time. Patients with acetylcholine receptor deficiency can also benefit from the addition of a ß2-adrenergic receptor agonist to their medication. The working mechanism of ß2-adrenergic agonists in myasthenic patients is not fully understood. Here, we report the long-term follow-up for the addition of ß2-adrenergic agonists for a cohort of patients with acetylcholine receptor deficiency on anticholinesterase medication that demonstrates a sustained quantitative improvement. Coincidently we used a disease model to mirror the treatment of acetylcholine receptor deficiency, and demonstrate improved muscle fatigue, improved neuromuscular transmission and improved synaptic structure resulting from the addition of the ß2-adrenergic agonist salbutamol to the anticholinesterase medication pyridostigmine. Following an initial improvement in muscle fatiguability, a gradual decline in the effect of pyridostigmine was observed in mice treated with pyridostigmine alone (P < 0.001). Combination therapy with pyridostigmine and salbutamol counteracted this decline (P < 0.001). Studies of compound muscle action potential decrement at high nerve stimulation frequencies (P < 0.05) and miniature end-plate potential amplitude analysis (P < 0.01) showed an improvement in mice following combination therapy, compared to pyridostigmine monotherapy. Pyridostigmine alone reduced postsynaptic areas (P < 0.001) and postsynaptic folding (P < 0.01). Combination therapy increased postsynaptic area (P < 0.001) and promoted the formation of postsynaptic junctional folds (P < 0.001), in particular in fast-twitch muscles. In conclusion, we demonstrate for the first time how the improvement seen in patients from adding salbutamol to their medication can be explained in an experimental model of acetylcholine receptor deficiency, the most common form of congenital myasthenic syndrome. Salbutamol enhances neuromuscular junction synaptic structure by counteracting the detrimental effects of long-term acetylcholinesterase inhibitors on the postsynaptic neuromuscular junction. The results have implications for both autoimmune and genetic myasthenias where anticholinesterase medication is a standard treatment.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Albuterol/farmacologia , Inibidores da Colinesterase/uso terapêutico , Síndromes Miastênicas Congênitas/tratamento farmacológico , Junção Neuromuscular/efeitos dos fármacos , Brometo de Piridostigmina/uso terapêutico , Potenciais de Ação/fisiologia , Agonistas de Receptores Adrenérgicos beta 2/uso terapêutico , Albuterol/uso terapêutico , Animais , Inibidores da Colinesterase/farmacologia , Modelos Animais de Doenças , Humanos , Camundongos , Brometo de Piridostigmina/farmacologia , Transmissão Sináptica/efeitos dos fármacos
7.
J Assist Reprod Genet ; 37(7): 1545-1552, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32409983

RESUMO

PURPOSE: Improving access to care is an issue at the forefront of reproductive medicine. We sought to describe how one academic center, set in the background of a large and diverse metropolitan city, cares for patients with extremely limited access to reproductive specialists. METHODS: The NYU Reproductive Endocrinology and Infertility (REI) Fellowship program provides a "fellow-run clinic" within Manhattan's Bellevue Hospital Center, which is led by the REI fellows and supervised by the REI attendings of the NYU Langone Health system. A description of the history of the hospital as well as the logistics of the fertility clinic is provided as a logistical template for implementation. RESULTS: The fellow-run fertility clinic at Bellevue hospital is held on two half days per month seeing approximately 150 new patients per year. The fertility workup, counseling, surgery, as well as ovulation induction, and early pregnancy management are offered within the construct of the fellowship and residency at NYU. Barriers to care and ways to circumvent those barriers are discussed in detail. CONCLUSION: By utilizing the ambition and construct of the OB/GYN programs, we greatly improve care for an otherwise underserved patient population by offering an efficient and optimal infertility workup and treatment in a population that would otherwise be without care. We utilize the framework of graduate medical education to provide autonomy, experience, and mentorship to both residents and fellows in our programs in an effort to provide a solution to combating inequity in infertility care.


Assuntos
Acessibilidade aos Serviços de Saúde/organização & administração , Hospitais Públicos , Infertilidade/terapia , Medicina Reprodutiva/educação , Adulto , Educação de Pós-Graduação em Medicina , Feminino , Fertilização in vitro , Aconselhamento Genético , Acessibilidade aos Serviços de Saúde/estatística & dados numéricos , Hospitais Públicos/organização & administração , Humanos , Infertilidade/economia , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque , Gravidez , Medicina Reprodutiva/economia , Técnicas de Reprodução Assistida/economia
8.
J Physiol ; 597(14): 3713-3725, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31158924

RESUMO

KEY POINTS: The physiological significance of the developmental switch from fetal to adult acetylcholine receptors in muscle (AChRs) and the functional impact of AChR clustering by rapsyn are not well studied. Using patch clamp experiments, we show that recovery from desensitization is faster in the adult AChR isoform. Recovery from desensitization is determined by the AChR isoform-specific cytoplasmic M3-M4 domain. The co-expression of rapsyn in muscle cells induced AChR clustering and facilitated recovery from desensitization in both fetal and adult AChRs. In fetal AChRs, facilitation of recovery kinetics by rapsyn was independent of AChR clustering. These effects could be crucial adaptations to motor neuron firing rates, which, in rodents, have been shown to increase around the time of birth when AChRs cluster at the developing neuromuscular junctions. ABSTRACT: The neuromuscular junction (NMJ) is the site of a number of autoimmune and genetic disorders, many involving the muscle-type nicotinic acetylcholine receptor (AChR), although there are aspects of normal NMJ development and function that need to be better understood. In particular, there are still questions regarding the implications of the developmental switch from fetal to adult AChRs, as well as how their functions might be modified by rapsyn that clusters the AChRs. Desensitization of human muscle AChRs was investigated using the patch clamp technique to measure whole-cell currents in muscle-type (TE671/CN21) and non-muscle (HEK293) cell lines expressing either fetal or adult AChRs. Desensitization time constants were similar with both AChR isoforms but recovery time constants were shorter in cells expressing adult compared to fetal AChRs (P < 0.0001). Chimeric experiments showed that recovery from desensitization was determined by the M3-M4 cytoplasmic loops of the γ- and ε-subunits. Expression of rapsyn in TE671/CN21 cells induced AChR aggregation and also, surprisingly, shortened recovery time constants in both fetal and adult AChRs. However, this was not dependent on clustering because rapsyn also facilitated recovery from desensitization in HEK293 cells expressing a δ-R375H AChR mutant that did not form clusters in C2C12 myotubes. Thus, rapsyn interactions with AChRs lead not only to clustering, but also to a clustering independent faster recovery from desensitization. Both effects of rapsyn could be a necessary adjustment to the motor neuron firing rates that increase around the time of birth.


Assuntos
Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/farmacologia , Receptores Nicotínicos/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Humanos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/metabolismo , Receptores Colinérgicos/metabolismo
9.
Am J Hum Genet ; 97(6): 878-85, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26626625

RESUMO

The neuromuscular junction (NMJ) consists of a tripartite synapse with a presynaptic nerve terminal, Schwann cells that ensheathe the terminal bouton, and a highly specialized postsynaptic membrane. Synaptic structural integrity is crucial for efficient signal transmission. Congenital myasthenic syndromes (CMSs) are a heterogeneous group of inherited disorders that result from impaired neuromuscular transmission, caused by mutations in genes encoding proteins that are involved in synaptic transmission and in forming and maintaining the structural integrity of NMJs. To identify further causes of CMSs, we performed whole-exome sequencing (WES) in families without an identified mutation in known CMS-associated genes. In two families affected by a previously undefined CMS, we identified homozygous loss-of-function mutations in COL13A1, which encodes the alpha chain of an atypical non-fibrillar collagen with a single transmembrane domain. COL13A1 localized to the human muscle motor endplate. Using CRISPR-Cas9 genome editing, modeling of the COL13A1 c.1171delG (p.Leu392Sfs(∗)71) frameshift mutation in the C2C12 cell line reduced acetylcholine receptor (AChR) clustering during myotube differentiation. This highlights the crucial role of collagen XIII in the formation and maintenance of the NMJ. Our results therefore delineate a myasthenic disorder that is caused by loss-of-function mutations in COL13A1, encoding a protein involved in organization of the NMJ, and emphasize the importance of appropriate symptomatic treatment for these individuals.


Assuntos
Colágeno Tipo XIII/genética , Mutação , Síndromes Miastênicas Congênitas/genética , Mioblastos/metabolismo , Junção Neuromuscular/metabolismo , Adulto , Animais , Linhagem Celular , Pré-Escolar , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Colágeno Tipo XIII/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Exoma , Feminino , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Masculino , Camundongos , Síndromes Miastênicas Congênitas/metabolismo , Síndromes Miastênicas Congênitas/patologia , Mioblastos/patologia , Junção Neuromuscular/crescimento & desenvolvimento , Junção Neuromuscular/patologia , Linhagem , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Sinapses/genética , Sinapses/metabolismo , Sinapses/patologia , Transmissão Sináptica
10.
J Neurol Neurosurg Psychiatry ; 87(8): 802-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27147698

RESUMO

BACKGROUND: Congenital myasthenic syndrome (CMS) due to mutations in GMPPB has recently been reported confirming the importance of glycosylation for the integrity of neuromuscular transmission. METHODS: Review of case notes of patients with mutations in GMPPB to identify the associated clinical, neurophysiological, pathological and laboratory features. In addition, serum creatine kinase (CK) levels within the Oxford CMS cohort were retrospectively analysed to assess its usefulness in the differential diagnosis of this new entity. RESULTS: All patients had prominent limb-girdle weakness with minimal or absent craniobulbar manifestations. Presentation was delayed beyond infancy with proximal muscle weakness and most patients recall poor performance in sports during childhood. Neurophysiology showed abnormal neuromuscular transmission only in the affected muscles and myopathic changes. Muscle biopsy showed dystrophic features and reduced α-dystroglycan glycosylation. In addition, myopathic changes were present on muscle MRI. CK was significantly increased in serum compared to other CMS subtypes. Patients were responsive to pyridostigimine alone or combined with 3,4-diaminopyridine and/or salbutamol. CONCLUSIONS: Patients with GMPPB-CMS have phenotypic features aligned with CMS subtypes harbouring mutations within the early stages of the glycosylation pathway. Additional features shared with the dystroglycanopathies include myopathic features, raised CK levels and variable mild cognitive delay. This syndrome underlines that CMS can occur in the absence of classic myasthenic manifestations such as ptosis and ophthalmoplegia or facial weakness, and links myasthenic disorders with dystroglycanopathies. This report should facilitate the recognition of this disorder, which is likely to be underdiagnosed and can benefit from symptomatic treatment.


Assuntos
Síndromes Miastênicas Congênitas/diagnóstico , Síndromes Miastênicas Congênitas/genética , Nucleotidiltransferases/genética , Adolescente , Adulto , Idoso , Disfunção Cognitiva/complicações , Creatina Quinase/sangue , Distroglicanas/metabolismo , Feminino , Glicosilação , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Síndromes Miastênicas Congênitas/metabolismo , Síndromes Miastênicas Congênitas/fisiopatologia , Adulto Jovem
11.
Brain ; 138(Pt 9): 2493-504, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26133662

RESUMO

Congenital myasthenic syndromes are inherited disorders that arise from impaired signal transmission at the neuromuscular junction. Mutations in at least 20 genes are known to lead to the onset of these conditions. Four of these, ALG2, ALG14, DPAGT1 and GFPT1, are involved in glycosylation. Here we identify a fifth glycosylation gene, GMPPB, where mutations cause congenital myasthenic syndrome. First, we identified recessive mutations in seven cases from five kinships defined as congenital myasthenic syndrome using decrement of compound muscle action potentials on repetitive nerve stimulation on electromyography. The mutations were present through the length of the GMPPB, and segregation, in silico analysis, exon trapping, cell transfection followed by western blots and immunostaining were used to determine pathogenicity. GMPPB congenital myasthenic syndrome cases show clinical features characteristic of congenital myasthenic syndrome subtypes that are due to defective glycosylation, with variable weakness of proximal limb muscle groups while facial and eye muscles are largely spared. However, patients with GMPPB congenital myasthenic syndrome had more prominent myopathic features that were detectable on muscle biopsies, electromyography, muscle magnetic resonance imaging, and through elevated serum creatine kinase levels. Mutations in GMPPB have recently been reported to lead to the onset of muscular dystrophy dystroglycanopathy. Analysis of four additional GMPPB-associated muscular dystrophy dystroglycanopathy cases by electromyography found that a defective neuromuscular junction component is not always present. Thus, we find mutations in GMPPB can lead to a wide spectrum of clinical features where deficit in neuromuscular transmission is the major component in a subset of cases. Clinical recognition of GMPPB-associated congenital myasthenic syndrome may be complicated by the presence of myopathic features, but correct diagnosis is important because affected individuals can respond to appropriate treatments.


Assuntos
Distroglicanas/metabolismo , Mutação/genética , Síndromes Miastênicas Congênitas/genética , Junção Neuromuscular/fisiopatologia , Nucleotidiltransferases/genética , Adolescente , Adulto , Análise Mutacional de DNA , Saúde da Família , Feminino , Células HEK293 , Humanos , Imageamento por Ressonância Magnética , Masculino , Músculo Esquelético/patologia , Síndromes Miastênicas Congênitas/patologia , Junção Neuromuscular/patologia , Nucleotidiltransferases/metabolismo , Transfecção , Adulto Jovem
12.
Hum Mol Genet ; 22(14): 2905-13, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23569079

RESUMO

Mutations in GFPT1 underlie a congenital myasthenic syndrome (CMS) characterized by a limb-girdle pattern of muscle weakness. Glutamine-fructose-6-phosphate transaminase 1 (GFPT1) is a key rate-limiting enzyme in the hexosamine biosynthetic pathway providing building blocks for the glycosylation of proteins and lipids. It is expressed ubiquitously and it is not readily apparent why mutations in this gene should cause a syndrome with symptoms restricted to muscle and, in particular, to the neuromuscular junction. Data from a muscle biopsy obtained from a patient with GFPT1 mutations indicated that there were reduced endplate acetylcholine receptors. We, therefore, further investigated the relationship between identified mutations in GFPT1 and expression of the muscle acetylcholine receptor. Cultured myotubes derived from two patients with GFPT1 mutations showed a significant reduction in cell-surface AChR expression (Pt1 P < 0.0001; Pt2 P = 0.0097). Inhibition of GFPT1 enzymatic activity or siRNA silencing of GFPT1 expression both resulted in reduced AChR cell-surface expression. Western blot and gene-silencing experiments indicate this is due to reduced steady-state levels of AChR α, δ, ε, but not ß subunits rather than altered transcription of AChR-subunit RNA. Uridine diphospho-N-acetylglucosamine, a product of the hexosamine synthetic pathway, acts as a substrate at an early stage in the N-linked glycosylation pathway. Similarity between CMS due to GFPT1 mutations and CMS due to DPAGT1 mutations would suggest that reduced endplate AChR due to defective N-linked glycosylation is a primary disease mechanism in this disorder.


Assuntos
Regulação para Baixo , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética , Mutação , Síndromes Miastênicas Congênitas/enzimologia , Receptores Colinérgicos/genética , Células Cultivadas , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Glicosilação , Humanos , Fibras Musculares Esqueléticas/enzimologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/metabolismo , Receptores Colinérgicos/metabolismo
13.
Am J Hum Genet ; 91(1): 193-201, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22742743

RESUMO

Congenital myasthenic syndromes are a heterogeneous group of inherited disorders that arise from impaired signal transmission at the neuromuscular synapse. They are characterized by fatigable muscle weakness. We performed whole-exome sequencing to determine the underlying defect in a group of individuals with an inherited limb-girdle pattern of myasthenic weakness. We identify DPAGT1 as a gene in which mutations cause a congenital myasthenic syndrome. We describe seven different mutations found in five individuals with DPAGT1 mutations. The affected individuals share a number of common clinical features, including involvement of proximal limb muscles, response to treatment with cholinesterase inhibitors and 3,4-diaminopyridine, and the presence of tubular aggregates in muscle biopsies. Analyses of motor endplates from two of the individuals demonstrate a severe reduction of endplate acetylcholine receptors. DPAGT1 is an essential enzyme catalyzing the first committed step of N-linked protein glycosylation. Our findings underscore the importance of N-linked protein glycosylation for proper functioning of the neuromuscular junction. Using the DPAGT1-specific inhibitor tunicamycin, we show that DPAGT1 is required for efficient glycosylation of acetylcholine-receptor subunits and for efficient export of acetylcholine receptors to the cell surface. We suggest that the primary pathogenic mechanism of DPAGT1 mutations is reduced levels of acetylcholine receptors at the endplate region. These individuals share clinical features similar to those of congenital myasthenic syndrome due to GFPT1 mutations, and their disorder might be part of a larger subgroup comprising the congenital myasthenic syndromes that result from defects in the N-linked glycosylation pathway and that manifest through impaired neuromuscular transmission.


Assuntos
Síndromes Miastênicas Congênitas/genética , Transferases (Outros Grupos de Fosfato Substituídos)/genética , 4-Aminopiridina/análogos & derivados , 4-Aminopiridina/farmacologia , Adulto , Amifampridina , Inibidores da Colinesterase/uso terapêutico , Feminino , Glicosilação , Humanos , Extremidade Inferior , Masculino , Pessoa de Meia-Idade , Placa Motora/metabolismo , Mutação , Síndromes Miastênicas Congênitas/patologia , Junção Neuromuscular/metabolismo , Receptores Colinérgicos/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/antagonistas & inibidores , Tunicamicina/farmacologia
14.
J Assist Reprod Genet ; 32(2): 249-54, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25561156

RESUMO

PURPOSE: To determine if day of embryo transfer (ET) affects gestational age (GA) and/or birth weight (BW) at a single university fertility center that primarily performs day 5/6 ET. METHODS: Retrospective cohort study of 2392 singleton live births resulting from IVF/ICSI at a single large university fertility center from 2003 to 2012. Patients were stratified by day 3 or day 5/6 ET. Outcome variables included patient age, gravidity, prior miscarriages, prior assisted reproduction technology cycles, number of embryos transferred, number of single ET, infertility diagnosis, neonatal sex, GA at birth, and BW. Subanalyses were performed on subgroups of preterm infants. A comparison was made between the study data and the Society of Assisted Reproductive Technologies (SART) published data. RESULTS: There was no difference in GA at birth (39 ± 2.1 weeks for day 3 ET, 39 ± 1.9 weeks for day 5/6 ET) or BW between ET groups (3308 ± 568 g for day 3 ET, 3268 ± 543 g for day 5/6 ET). There was also no difference in the number of preterm deliveries (8.5 % for day 3 ET vs. 10.8 % for day 5/6 ET). The day 5/6 ET study data had significantly fewer pre-term deliveries than the SART day 5/6 ET data. CONCLUSION: In contrast to published SART data, GA and BW were not influenced by day of ET. Data may be more uniform at a single institution. Day 5/6 ET continues to offer improved pregnancy rates without compromising birth outcomes.


Assuntos
Transferência Embrionária/métodos , Resultado da Gravidez , Adulto , Estudos de Coortes , Feminino , Fertilização in vitro , Idade Gestacional , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Nascido Vivo , Masculino , Gravidez , Taxa de Gravidez , Nascimento Prematuro , Estudos Retrospectivos , Transferência de Embrião Único
15.
Hum Mol Genet ; 21(17): 3765-75, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22661499

RESUMO

Congenital myasthenic syndromes (CMS) are a group of inherited diseases that affect synaptic transmission at the neuromuscular junction and result in fatiguable muscle weakness. A subgroup of CMS patients have a recessively inherited limb-girdle pattern of weakness caused by mutations in DOK7. DOK7 encodes DOK7, an adaptor protein that is expressed in the skeletal muscle and heart and that is essential for the development and maintenance of the neuromuscular junction. We have screened the DOK7 gene for mutations by polymerase chain reaction amplification and bi-directional sequencing of exonic and promoter regions and performed acetylcholine receptor (AChR) clustering assays and used exon trapping to determine the pathogenicity of detected variants. Approximately 18% of genetically diagnosed CMSs in the UK have mutations in DOK7, with mutations in this gene identified in more than 60 kinships to date. Thirty-four different pathogenic mutations were identified as well as 27 variants likely to be non-pathogenic. An exon 7 frameshift duplication c.1124_1127dupTGCC is commonly found in at least one allele. We analyse the effect of the common frameshift c.1124_1127dupTGCC and show that 10/11 suspected missense mutations have a deleterious effect on AChR clustering. We identify for the first time homozygous or compound heterozygous mutations that are localized 5' to exon 7. In addition, three silent variants in the N-terminal half of DOK7 are predicted to alter the splicing of the DOK7 RNA transcript. The DOK7 gene is highly polymorphic, and within these many variants, we define a spectrum of mutations that can underlie DOK7 CMS that will inform in managing this disorder.


Assuntos
Predisposição Genética para Doença , Proteínas Musculares/genética , Mutação/genética , Síndromes Miastênicas Congênitas/genética , Junção Neuromuscular/genética , Sinapses/genética , Sinapses/patologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Western Blotting , Linhagem Celular , Éxons/genética , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Musculares/química , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutação de Sentido Incorreto/genética , Síndromes Miastênicas Congênitas/patologia , Fases de Leitura Aberta/genética , Receptores Colinérgicos/metabolismo , Alinhamento de Sequência , Transfecção
16.
Am J Hum Genet ; 88(2): 162-72, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21310273

RESUMO

Neuromuscular junctions (NMJs) are synapses that transmit impulses from motor neurons to skeletal muscle fibers leading to muscle contraction. Study of hereditary disorders of neuromuscular transmission, termed congenital myasthenic syndromes (CMS), has helped elucidate fundamental processes influencing development and function of the nerve-muscle synapse. Using genetic linkage, we find 18 different biallelic mutations in the gene encoding glutamine-fructose-6-phosphate transaminase 1 (GFPT1) in 13 unrelated families with an autosomal recessive CMS. Consistent with these data, downregulation of the GFPT1 ortholog gfpt1 in zebrafish embryos altered muscle fiber morphology and impaired neuromuscular junction development. GFPT1 is the key enzyme of the hexosamine pathway yielding the amino sugar UDP-N-acetylglucosamine, an essential substrate for protein glycosylation. Our findings provide further impetus to study the glycobiology of NMJ and synapses in general.


Assuntos
Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética , Hexosaminas/metabolismo , Mutação/genética , Síndromes Miastênicas Congênitas/genética , Transdução de Sinais , Animais , Western Blotting , Estudos de Casos e Controles , Células Cultivadas , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Feminino , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento , Ligação Genética , Glicosilação , Humanos , Técnicas Imunoenzimáticas , Hibridização in Situ Fluorescente , Masculino , Síndromes Miastênicas Congênitas/patologia , Junção Neuromuscular/fisiologia , Linhagem , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transmissão Sináptica/fisiologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
17.
Brain ; 136(Pt 3): 944-56, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23404334

RESUMO

Congenital myasthenic syndromes are a heterogeneous group of inherited disorders that arise from impaired signal transmission at the neuromuscular synapse. They are characterized by fatigable muscle weakness. We performed linkage analysis, whole-exome and whole-genome sequencing to determine the underlying defect in patients with an inherited limb-girdle pattern of myasthenic weakness. We identify ALG14 and ALG2 as novel genes in which mutations cause a congenital myasthenic syndrome. Through analogy with yeast, ALG14 is thought to form a multiglycosyltransferase complex with ALG13 and DPAGT1 that catalyses the first two committed steps of asparagine-linked protein glycosylation. We show that ALG14 is concentrated at the muscle motor endplates and small interfering RNA silencing of ALG14 results in reduced cell-surface expression of muscle acetylcholine receptor expressed in human embryonic kidney 293 cells. ALG2 is an alpha-1,3-mannosyltransferase that also catalyses early steps in the asparagine-linked glycosylation pathway. Mutations were identified in two kinships, with mutation ALG2p.Val68Gly found to severely reduce ALG2 expression both in patient muscle, and in cell cultures. Identification of DPAGT1, ALG14 and ALG2 mutations as a cause of congenital myasthenic syndrome underscores the importance of asparagine-linked protein glycosylation for proper functioning of the neuromuscular junction. These syndromes form part of the wider spectrum of congenital disorders of glycosylation caused by impaired asparagine-linked glycosylation. It is likely that further genes encoding components of this pathway will be associated with congenital myasthenic syndromes or impaired neuromuscular transmission as part of a more severe multisystem disorder. Our findings suggest that treatment with cholinesterase inhibitors may improve muscle function in many of the congenital disorders of glycosylation.


Assuntos
Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/fisiopatologia , N-Acetilglucosaminiltransferases/genética , Adolescente , Idade de Início , Sequência de Bases , Western Blotting , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Mutação , Síndromes Miastênicas Congênitas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem , Adulto Jovem
18.
Brain ; 135(Pt 4): 1070-80, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22382357

RESUMO

Muscle acetylcholine receptor ion channels mediate neurotransmission by depolarizing the postsynaptic membrane at the neuromuscular junction. Inherited disorders of neuromuscular transmission, termed congenital myasthenic syndromes, are commonly caused by mutations in genes encoding the five subunits of the acetylcholine receptor that severely reduce endplate acetylcholine receptor numbers and/or cause kinetic abnormalities of acetylcholine receptor function. We tracked the cause of the myasthenic disorder in a female with onset of first symptoms at birth, who displayed mildly progressive bulbar, respiratory and generalized limb weakness with ptosis and ophthalmoplegia. Direct DNA sequencing revealed heteroallelic mutations in exon 8 of the acetylcholine receptor ε-subunit gene. Two alleles were identified: one with the missense substitution p.εP282R, and the second with a deletion, c.798_800delCTT, which result in the loss of a single amino acid, residue F266, within the M2 transmembrane domain. When these acetylcholine receptor mutations were expressed in HEK 293 cells, the p.εP282R mutation caused severely reduced expression on the cell surface, whereas p.εΔF266 gave robust surface expression. Single-channel analysis for p.εΔF266 acetylcholine receptor channels showed the longest burst duration population was not different from wild-type acetylcholine receptor (4.39 ± 0.6 ms versus 4.68 ± 0.7 ms, n = 5 each) but that the amplitude of channel openings was reduced. Channel amplitudes at different holding potentials showed that single-channel conductance was significantly reduced in p.εΔF266 acetylcholine receptor channels (42.7 ± 1.4 pS, n = 8, compared with 70.9 ± 1.6 pS for wild-type, n = 6). Although a phenylalanine residue at this position within M2 is conserved throughout ligand-gated excitatory cys-loop channel subunits, deletion of equivalent residues in the other subunits of muscle acetylcholine receptor did not have equivalent effects. Modelling the impact of p.εΔF266 revealed only a minor alteration to channel structure. In this study we uncover the novel mechanism of reduced acetylcholine receptor channel conductance as an underlying cause of congenital myasthenic syndrome, with the 'low conductance' phenotype that results from the p.εΔF266 deletion mutation revealed by the coinheritance of the low-expressor mutation p.εP282R.


Assuntos
Canais Iônicos/fisiologia , Síndromes Miastênicas Congênitas/genética , Receptores Nicotínicos/genética , Acetilcolina/farmacologia , Fenômenos Biofísicos/efeitos dos fármacos , Fenômenos Biofísicos/genética , Bungarotoxinas/farmacocinética , Linhagem Celular Transformada , Análise Mutacional de DNA , Estimulação Elétrica , Feminino , Humanos , Imunoprecipitação , Isótopos de Iodo/farmacocinética , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/genética , Canais Iônicos/genética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Pessoa de Meia-Idade , Técnicas de Patch-Clamp , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Estrutura Terciária de Proteína/genética , Análise de Sequência de Proteína , Deleção de Sequência/genética , Transfecção
19.
Artigo em Inglês | MEDLINE | ID: mdl-37582613

RESUMO

BACKGROUND AND OBJECTIVES: Up to 50% of patients with myasthenia gravis (MG) without acetylcholine receptor antibodies (AChR-Abs) have antibodies to muscle-specific kinase (MuSK). Most MuSK antibodies (MuSK-Abs) are IgG4 and inhibit agrin-induced MuSK phosphorylation, leading to impaired clustering of AChRs at the developing or mature neuromuscular junction. However, IgG1-3 MuSK-Abs also exist in MuSK-MG patients, and their potential mechanisms have not been explored fully. METHODS: C2C12 myotubes were exposed to MuSK-MG plasma IgG1-3 or IgG4, with or without purified agrin. MuSK, Downstream of Kinase 7 (DOK7), and ßAChR were immunoprecipitated and their phosphorylation levels identified by immunoblotting. Agrin and agrin-independent AChR clusters were measured by immunofluorescence and AChR numbers by binding of 125I-α-bungarotoxin. Transcriptomic analysis was performed on treated myotubes. RESULTS: IgG1-3 MuSK-Abs impaired AChR clustering without inhibiting agrin-induced MuSK phosphorylation. Moreover, the well-established pathway initiated by MuSK through DOK7, resulting in ßAChR phosphorylation, was not impaired by MuSK-IgG1-3 and was agrin-independent. Nevertheless, the AChR clusters did not form, and both the number of AChR microclusters that precede full cluster formation and the myotube surface AChRs were reduced. Transcriptomic analysis did not throw light on the pathways involved. However, the SHP2 inhibitor, NSC-87877, increased the number of microclusters and led to fully formed AChR clusters. DISCUSSION: MuSK-IgG1-3 is pathogenic but seems to act through a noncanonical pathway. Further studies should throw light on the mechanisms involved at the neuromuscular junction.


Assuntos
Miastenia Gravis , Receptores Proteína Tirosina Quinases , Humanos , Agrina/farmacologia , Imunoglobulina G , Proteínas Musculares/metabolismo , Miastenia Gravis/tratamento farmacológico , Fosforilação , Receptores Colinérgicos
20.
Remote Sens Environ ; 121: 186-195, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22423150

RESUMO

A time series of 230 intra- and inter-annual Landsat Thematic Mapper images was used to identify land that was ever cropped during the years 1984 through 2010 for a five county region in southwestern Kansas. Annual maximum Normalized Difference Vegetation Index (NDVI) image composites (NDVI(ann-max)) were used to evaluate the inter-annual dynamics of cropped and non-cropped land. Three feature images were derived from the 27-year NDVI(ann-max) image time series and used in the classification: 1) maximum NDVI value that occurred over the entire 27 year time span (NDVI(max)), 2) standard deviation of the annual maximum NDVI values for all years (NDVI(sd)), and 3) standard deviation of the annual maximum NDVI values for years 1984-1986 (NDVI(sd84-86)) to improve Conservation Reserve Program land discrimination.Results of the classification were compared to three reference data sets: County-level USDA Census records (1982-2007) and two digital land cover maps (Kansas 2005 and USGS Trends Program maps (1986-2000)). Area of ever-cropped land for the five counties was on average 11.8 % higher than the area estimated from Census records. Overall agreement between the ever-cropped land map and the 2005 Kansas map was 91.9% and 97.2% for the Trends maps. Converting the intra-annual Landsat data set to a single annual maximum NDVI image composite considerably reduced the data set size, eliminated clouds and cloud-shadow affects, yet maintained information important for discriminating cropped land. Our results suggest that Landsat annual maximum NDVI image composites will be useful for characterizing land use and land cover change for many applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA