Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
2.
Reproduction ; 163(6): 333-340, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35315790

RESUMO

Sex determination in mammals is controlled by the dominance of either pro-testis (SRY-SOX9-FGF9) or pro-ovary (RSPO1-WNT4-FOXL2) genetic pathways during early gonad development in XY and XX embryos, respectively. We have previously shown that early, robust expression of mouse Sry is dependent on the nuclear protein GADD45g. In the absence of GADD45g, XY gonadal sex reversal occurs, associated with a major reduction of Sry levels at 11.5 dpc. Here, we probe the relationship between Gadd45g and Sry further, using gain- and loss-of-function genetics. First, we show that transgenic Gadd45g overexpression can elevate Sry expression levels at 11.5 dpc in the B6.YPOS model of sex reversal, resulting in phenotypic rescue. We then show that the zygosity of pro-ovarian Rspo1 is critical for the degree of gonadal sex reversal observed in both B6.YPOS and Gadd45g-deficient XY gonads, in contrast to that of Foxl2. Phenotypic rescue of sex reversal is observed in XY gonads lacking both Gadd45g and Rspo1, but this is not associated with rescue of Sry expression levels at 11.5 dpc. Instead, Sox9 levels are rescued by around 12.5 dpc. We conclude that Gadd45g is absolutely required for timely expression of Sry in XY gonads, independently of RSPO1-mediated WNT signalling, and discuss these data in light of our understanding of antagonistic interactions between the pro-testis and pro-ovary pathways.


Assuntos
Gônadas , Fatores de Transcrição SOX9 , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/metabolismo , Masculino , Mamíferos/genética , Camundongos , Ovário/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Processos de Determinação Sexual , Diferenciação Sexual , Proteína da Região Y Determinante do Sexo/genética , Proteína da Região Y Determinante do Sexo/metabolismo , Testículo/metabolismo , Trombospondinas/genética , Trombospondinas/metabolismo , Via de Sinalização Wnt
3.
Sci Rep ; 8(1): 17318, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30470800

RESUMO

Bacterial artificial chromosomes (BACs) offer a means of manipulating gene expression and tagging gene products in the mammalian genome without the need to alter endogenous gene structure and risk deleterious phenotypic consequences. However, for a BAC clone to be useful for such purposes it must be shown to contain all the regulatory elements required for normal gene expression and allow phenotypic rescue in the absence of an endogenous gene. Here, we report identification of a functional BAC containing Gadd45g, a gene implicated in DNA repair, DNA demethylation and testis determination in mice and exhibiting a broad pattern of embryonic expression. Mouse fetuses lacking the endogenous Gadd45g gene undergo normal testis development in the presence of the Gadd45g BAC transgene. Moreover, a survey of embryonic Gadd45g expression from the BAC reveals that all reported sites of expression are maintained. This functional BAC can now be used for subsequent manipulation of the Gadd45g gene with the confidence that regulatory elements required for embryonic expression, including testis determination, are present. We describe the generation and characterisation of a Gadd45g-mCherry fluorescent reporter exhibiting strong expression in developing gonads and neural tissue, recapitulating endogenous gene expression, as evidence of this.


Assuntos
Cromossomos Artificiais Bacterianos , Regulação da Expressão Gênica no Desenvolvimento , Engenharia Genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Sequências Reguladoras de Ácido Nucleico , Testículo/crescimento & desenvolvimento , Transgenes , Animais , Masculino , Camundongos , Camundongos Transgênicos , Testículo/metabolismo , Proteínas GADD45
4.
PLoS One ; 9(8): e105595, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25140802

RESUMO

Many of the neurodegenerative diseases that afflict people in later life are associated with the formation of protein aggregates. These so-called "proteinopathies" include Alzheimer's disease (AD) and Huntington's disease (HD). The insulin/insulin-like growth factor signalling (IIS) pathway has been proposed to modulate such diseases in model organisms, as well as the general ageing process. In this pathway, insulin-like growth factor binds to insulin-like growth factor receptors, such as the insulin-like growth factor 1 receptor (IGF-1R). Heterozygous deletion of Igf-1r has been shown to lead to increased lifespan in mice. Reducing the activity of this pathway had benefits in a HD C. elegans model, and some of these may be attributed to the expected inhibition of mTOR activity resulting in an increase in autophagy, which would enhance mutant huntingtin clearance. Thus, we tested if heterozygous deletion of Igf-1r would lead to benefits in HD related phenotypes in the mouse. Surprisingly, reducing Igf-1r levels led to some beneficial effects in HD females, but also led to some detrimental effects in HD males. Interestingly, Igf-1r deficiency had no discernible effects on downstream mTOR signalling in HD mice. These results do not support a broad beneficial effect of diminishing the IIS pathway in HD pathology in a mammalian system.


Assuntos
Doença de Huntington/metabolismo , Receptor IGF Tipo 1/metabolismo , Animais , Feminino , Deleção de Genes , Heterozigoto , Doença de Huntington/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Receptor IGF Tipo 1/genética , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA