RESUMO
The transcriptional machinery is thought to dissociate from DNA during replication. Certain proteins, termed epigenetic marks, must be transferred from parent to daughter DNA strands in order to maintain the memory of transcriptional states1,2. These proteins are believed to re-initiate rebuilding of chromatin structure, which ultimately recruits RNA polymerase II (Pol II) to the newly replicated daughter strands. It is believed that Pol II is recruited back to active genes only after chromatin is rebuilt3,4. However, there is little experimental evidence addressing the central questions of when and how Pol II is recruited back to the daughter strands and resumes transcription. Here we show that immediately after passage of the replication fork, Pol II in complex with other general transcription proteins and immature RNA re-associates with active genes on both leading and lagging strands of nascent DNA, and rapidly resumes transcription. This suggests that the transcriptionally active Pol II complex is retained in close proximity to DNA, with a Pol II-PCNA interaction potentially underlying this retention. These findings indicate that the Pol II machinery may not require epigenetic marks to be recruited to the newly synthesized DNA during the transition from DNA replication to resumption of transcription.
Assuntos
Cromatina , Replicação do DNA , DNA , Genes , RNA Polimerase II , Transcrição Gênica , Cromatina/genética , DNA/biossíntese , DNA/genética , DNA/metabolismo , DNA Polimerase II/metabolismo , Epigênese Genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , RNA Polimerase II/metabolismo , Fatores Genéricos de Transcrição/metabolismo , RNA/genética , RNA/metabolismoRESUMO
Propagation of gene-expression patterns through the cell cycle requires the existence of an epigenetic mark that re-establishes the chromatin architecture of the parental cell in the daughter cells. We devised assays to determine which potential epigenetic marks associate with epigenetic maintenance elements during DNA replication in Drosophila embryos. Histone H3 trimethylated at lysines 4 or 27 is present during transcription but, surprisingly, is replaced by nonmethylated H3 following DNA replication. Methylated H3 is detected on DNA only in nuclei not in S phase. In contrast, the TrxG and PcG proteins Trithorax and Enhancer-of-Zeste, which are H3K4 and H3K27 methylases, and Polycomb continuously associate with their response elements on the newly replicated DNA. We suggest that histone modification enzymes may re-establish the histone code on newly assembled unmethylated histones and thus may act as epigenetic marks.
Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Replicação do DNA , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Código das Histonas , Histonas/metabolismo , Animais , Drosophila/citologia , Drosophila/genética , Embrião não Mamífero/metabolismo , Epigênese Genética , Complexo Repressor Polycomb 1 , Antígeno Nuclear de Célula em Proliferação/metabolismo , Processamento de Proteína Pós-Traducional , Fase SRESUMO
Recruitment of transcription factors (TFs) to repressed genes in euchromatin is essential to activate new transcriptional programs during cell differentiation. However, recruitment of all TFs, including pioneer factors, is impeded by condensed H3K27me3-containing chromatin. Single-cell and gene-specific analyses revealed that, during the first hours of induction of differentiation of mammalian embryonic stem cells (ESCs), accumulation of the repressive histone mark H3K27me3 is delayed after DNA replication, indicative of a decondensed chromatin structure in all regions of the replicating genome. This delay provides a critical "window of opportunity" for recruitment of lineage-specific TFs to DNA. Increasing the levels of post-replicative H3K27me3 or preventing S phase entry inhibited recruitment of new TFs to DNA and significantly blocked cell differentiation. These findings suggest that recruitment of lineage-specifying TFs occurs soon after replication and is facilitated by a decondensed chromatin structure. This insight may explain the developmental plasticity of stem cells and facilitate their exploitation for therapeutic purposes.
Assuntos
Diferenciação Celular , Linhagem da Célula , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Replicação do DNA , DNA/biossíntese , Células-Tronco Embrionárias/metabolismo , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Sítios de Ligação , Plasticidade Celular , Cromatina/química , DNA/química , DNA/genética , Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento , Histona Desmetilases/metabolismo , Histonas/química , Humanos , Metilação , Camundongos , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Relação Estrutura-Atividade , Fatores de Tempo , Fatores de Transcrição/genéticaRESUMO
Expression of the cell cycle regulatory gene CDK6 is required for Philadelphia-positive (Ph+) acute lymphoblastic leukemia (ALL) cell growth, whereas expression of the closely related CDK4 protein is dispensable. Moreover, CDK6 silencing is more effective than treatment with the dual CDK4/6 inhibitor palbociclib in suppressing Ph+ ALL in mice, suggesting that the growth-promoting effects of CDK6 are, in part, kinase-independent in Ph+ ALL. Accordingly, we developed CDK4/6-targeted proteolysis-targeting chimeras (PROTACs) that inhibit CDK6 enzymatic activity in vitro, promote the rapid and preferential degradation of CDK6 over CDK4 in Ph+ ALL cells, and markedly suppress S-phase cells concomitant with inhibition of CDK6-regulated phospho-RB and FOXM1 expression. No such effects were observed in CD34+ normal hematopoietic progenitors, although CDK6 was efficiently degraded. Treatment with the CDK6-degrading PROTAC YX-2-107 markedly suppressed leukemia burden in mice injected with de novo or tyrosine kinase inhibitor-resistant primary Ph+ ALL cells, and this effect was comparable or superior to that of the CDK4/6 enzymatic inhibitor palbociclib. These studies provide "proof of principle" that targeting CDK6 with PROTACs that inhibit its enzymatic activity and promote its degradation represents an effective strategy to exploit the "CDK6 dependence" of Ph+ ALL and, perhaps, of other hematologic malignancies. Moreover, they suggest that treatment of Ph+ ALL with CDK6-selective PROTACs would spare a high proportion of normal hematopoietic progenitors, preventing the neutropenia induced by treatment with dual CDK4/6 inhibitors.
Assuntos
Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 6 Dependente de Ciclina/metabolismo , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Perfilação da Expressão Gênica , Genes cdc , Humanos , Camundongos , Estrutura Molecular , Fosforilação , Leucemia-Linfoma Linfoblástico de Células Precursoras/etiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/uso terapêutico , Resultado do Tratamento , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The Drosophila ecdysone receptor (EcR/Usp) is thought to activate or repress gene transcription depending on the presence or absence, respectively, of the hormone ecdysone. Unexpectedly, we found an alternative mechanism at work in salivary glands during the ecdysone-dependent transition from larvae to pupae. In the absense of ecdysone, both ecdysone receptor subunits localize to the cytoplasm, and the heme-binding nuclear receptor E75A replaces EcR/Usp at common target sequences in several genes. During the larval-pupal transition, a switch from gene activation by EcR/Usp to gene repression by E75A is triggered by a decrease in ecdysone concentration and by direct repression of the EcR gene by E75A. Additional control is provided by developmentally timed modulation of E75A activity by NO, which inhibits recruitment of the corepressor SMRTER. These results suggest a mechanism for sequential modulation of gene expression during development by competing nuclear receptors and their effector molecules, ecdysone and NO.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Ecdisona/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Óxido Nítrico/metabolismo , Receptores de Esteroides/metabolismo , Fatores de Transcrição/metabolismo , Animais , Drosophila melanogaster , Inativação Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Larva , Modelos Genéticos , Regiões Promotoras Genéticas , PupaRESUMO
DNA replication and RNA transcription both utilize DNA as a template and therefore need to coordinate their activities. The predominant theory in the field is that in order for the replication fork to proceed, transcription machinery has to be evicted from DNA until replication is complete. If that does not occur, these machineries collide, and these collisions elicit various repair mechanisms which require displacement of one of the enzymes, often RNA polymerase, in order for replication to proceed. This model is also at the heart of the epigenetic bookmarking theory, which implies that displacement of RNA polymerase during replication requires gradual re-building of chromatin structure, which guides recruitment of transcriptional proteins and resumption of transcription. We discuss these theories but also bring to light newer data that suggest that these two processes may not be as detrimental to one another as previously thought. This includes findings suggesting that these processes can occur without fork collapse and that RNA polymerase may only be transiently displaced during DNA replication. We discuss potential mechanisms by which RNA polymerase may be retained at the replication fork and quickly rebind to DNA post-replication. These discoveries are important, not only as new evidence as to how these two processes are able to occur harmoniously but also because they have implications on how transcriptional programs are maintained through DNA replication. To this end, we also discuss the coordination of replication and transcription in light of revising the current epigenetic bookmarking theory of how the active gene status can be transmitted through S phase.
Assuntos
Replicação do DNA , RNA Polimerases Dirigidas por DNA , Epigênese Genética , Transcrição Gênica , Animais , Cromatina/metabolismo , Cromatina/genética , DNA/metabolismo , DNA/genética , Replicação do DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Transcrição Gênica/genética , Eucariotos/genética , Eucariotos/metabolismoRESUMO
Fibrosis, or excessive scarring, is characterized by the emergence of alpha-smooth muscle actin (αSMA)-expressing myofibroblasts and the excessive accumulation of fibrotic extracellular matrix (ECM). Currently, there is a lack of effective treatment options for fibrosis, highlighting an unmet need to identify new therapeutic targets. The acquisition of a fibrotic phenotype is associated with changes in chromatin structure, a key determinant of gene transcription activation and repression. The major repressive histone mark, H3K27me3, has been linked to dynamic changes in gene expression in fibrosis through alterations in chromatin structure. H3K27-specific homologous histone methylase (HMT) enzymes, Enhancer of zeste 1 and 2 (EZH1, EZH2), which are the alternative subunits of the Polycomb Repressive Complex 2 (PRC2) and demethylase (KDM) enzymes, Ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX), and Lysine demethylase 6B (KDM6B), are responsible for regulating methylation status of H3K27me3. In this review, we explore how these key enzymes regulate chromatin structure to alter gene expression in fibrosis, highlighting them as attractive targets for the treatment of fibrosis.
RESUMO
Cell reprogramming to a myofibroblast responsible for the pathological accumulation of extracellular matrix is fundamental to the onset of fibrosis. Here, we explored how condensed chromatin structure marked by H3K72me3 becomes modified to allow for activation of repressed genes to drive emergence of myofibroblasts. In the early stages of myofibroblast precursor cell differentiation, we discovered that H3K27me3 demethylase enzymes UTX/KDM6B creates a delay in the accumulation of H3K27me3 on nascent DNA revealing a period of decondensed chromatin structure. This period of decondensed nascent chromatin structure allows for binding of pro-fibrotic transcription factor, Myocardin-related transcription factor A (MRTF-A) to nascent DNA. Inhibition of UTX/KDM6B enzymatic activity condenses chromatin structure, prevents MRTF-A binding, blocks activation of the pro-fibrotic transcriptome, and results in an inhibition of fibrosis in lens and lung fibrosis models. Our work reveals UTX/KDM6B as central coordinators of fibrosis, highlighting the potential to target its demethylase activity to prevent organ fibrosis.
RESUMO
Despite treatment with intensive chemotherapy, acute myelogenous leukemia (AML) remains an aggressive malignancy with a dismal outcome in most patients. We found that AML cells exhibit an unusually rapid accumulation of the repressive histone mark H3K27me3 on nascent DNA. In cell lines, primary cells and xenograft mouse models, inhibition of the H3K27 histone methyltransferase EZH2 to decondense the H3K27me3-marked chromatin of AML cells enhanced chromatin accessibility and chemotherapy-induced DNA damage, apoptosis, and leukemia suppression. These effects were further promoted when chromatin decondensation of AML cells was induced upon S-phase entry after release from a transient G1 arrest mediated by CDK4/6 inhibition. In the p53-null KG-1 and THP-1 AML cell lines, EZH2 inhibitor and doxorubicin cotreatment induced transcriptional reprogramming that was, in part, dependent on derepression of H3K27me3-marked gene promoters and led to increased expression of cell death-promoting and growth-inhibitory genes.In conclusion, decondensing H3K27me3-marked chromatin by EZH2 inhibition represents a promising approach to improve the efficacy of DNA-damaging cytotoxic agents in patients with AML. This strategy might allow for a lowering of chemotherapy doses, with a consequent reduction of treatment-related side effects in elderly patients with AML or those with significant comorbidities. SIGNIFICANCE: Pharmacological inhibition of EZH2 renders DNA of AML cells more accessible to cytotoxic agents, facilitating leukemia suppression with reduced doses of chemotherapy.See related commentary by Adema and Colla, p. 359.
Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Leucemia Mieloide Aguda/genética , Animais , Humanos , CamundongosRESUMO
Rapid induction of the Drosophila melanogaster heat shock gene hsp70 is achieved through the binding of heat shock factor (HSF) to heat shock elements (HSEs) located upstream of the transcription start site (reviewed in ref. 3). The subsequent recruitment of several other factors, including Spt5, Spt6 and FACT, is believed to facilitate Pol II elongation through nucleosomes downstream of the start site. Here, we report a novel mechanism of heat shock gene regulation that involves modifications of nucleosomes by the TAC1 histone modification complex. After heat stress, TAC1 is recruited to several heat shock gene loci, where its components are required for high levels of gene expression. Recruitment of TAC1 to the 5'-coding region of hsp70 seems to involve the elongating Pol II complex. TAC1 has both histone H3 Lys 4-specific (H3-K4) methyltransferase (HMTase) activity and histone acetyltransferase activity through Trithorax (Trx) and CREB-binding protein (CBP), respectively. Consistently, TAC1 is required for methylation and acetylation of nucleosomal histones in the 5'-coding region of hsp70 after induction, suggesting an unexpected role for TAC1 during transcriptional elongation.
Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Fatores de Transcrição , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Embrião não Mamífero/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Histonas/metabolismo , Temperatura Alta , Substâncias Macromoleculares , Nucleossomos/metabolismo , Sequências Reguladoras de Ácido Nucleico , Transcrição GênicaRESUMO
Steroid hormones fulfil important functions in animal development. In Drosophila, ecdysone triggers moulting and metamorphosis through its effects on gene expression. Ecdysone works by binding to a nuclear receptor, EcR, which heterodimerizes with the retinoid X receptor homologue Ultraspiracle. Both partners are required for binding to ligand or DNA. Like most DNA-binding transcription factors, nuclear receptors activate or repress gene expression by recruiting co-regulators, some of which function as chromatin-modifying complexes. For example, p160 class coactivators associate with histone acetyltransferases and arginine histone methyltransferases. The Trithorax-related gene of Drosophila encodes the SET domain protein TRR. Here we report that TRR is a histone methyltransferases capable of trimethylating lysine 4 of histone H3 (H3-K4). trr acts upstream of hedgehog (hh) in progression of the morphogenetic furrow, and is required for retinal differentiation. Mutations in trr interact in eye development with EcR, and EcR and TRR can be co-immunoprecipitated on ecdysone treatment. TRR, EcR and trimethylated H3-K4 are detected at the ecdysone-inducible promoters of hh and BR-C in cultured cells, and H3-K4 trimethylation at these promoters is decreased in embryos lacking a functional copy of trr. We propose that TRR functions as a coactivator of EcR by altering the chromatin structure at ecdysone-responsive promoters.
Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/efeitos dos fármacos , Drosophila/embriologia , Ecdisona/farmacologia , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Animais , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Olho/embriologia , Olho/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas Hedgehog , Histona-Lisina N-Metiltransferase/genética , Masculino , Metilação/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Receptores de Esteroides/metabolismoRESUMO
In Drosophila melanogaster, in response to developmental transcription factors, and by repeated initiation of DNA replication of four chorion genes, ovarian follicle cells, form an onion skin-type structure at the replication origins. The DNA replication machinery is conserved from yeast to humans. Subunits of the origin recognition complex (ORC) is comprised of Orc1, Orc2, and Cdc6 genes. While mutations of Orc1 and Orc2 and not Cdc6can be lethal, overexpression of these genes lead to female sterility. Ecdysone, is a steroidal prohormone of the major insect molting hormone 20-hydroxyecdysone that in Drosophila, triggers molting, metamorphosis, and oogenesis. To this end, we identified several ecdysone receptor (EcR) binding sites around gene amplification loci. We also found that H3K4 was trimethylated at chorion gene amplification origins, but not at the act1 locus. Female mutants overexpressing Lsd1 (a dimethyl histone H3K4 demethylase) or Lid (a trimethyl histone H3K4 demethylase), but not a Lid mutant, were sterile. The data suggest that ecdysone signaling determines which origin initiates DNA replication and contributes to the development. Screening strategies using Drosophila offer the opportunity for development of drugs that reduce gene amplification and alter histone modification associated with epigenetic effects.
Assuntos
Drosophila melanogaster/genética , Epigênese Genética , Amplificação de Genes , Regulação da Expressão Gênica no Desenvolvimento , Animais , Animais Geneticamente Modificados , Córion/crescimento & desenvolvimento , Córion/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Feminino , Histonas/metabolismo , Humanos , Metilação , Oogênese/genética , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo , Folículo Ovariano/citologia , Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismoRESUMO
Over 80% of triple-negative breast cancers (TNBC) express mutant p53 (mtp53) and some contain oncogenic gain-of-function (GOF) p53. We previously reported that GOF mtp53 R273H upregulates the chromatin association of mini chromosome maintenance (MCM) proteins MCM2-7 and PARP and named this the mtp53-PARP-MCM axis. In this study, we dissected the function and association between mtp53 and PARP using a number of different cell lines, patient-derived xenografts (PDX), tissue microarrays (TMA), and The Cancer Genome Atlas (TCGA) database. Endogenous mtp53 R273H and exogenously expressed R273H and R248W bound to nascent 5-ethynyl-2´-deoxyuridine-labeled replicating DNA. Increased mtp53 R273H enhanced the association of mtp53 and PARP on replicating DNA. Blocking poly-ADP-ribose gylcohydrolase also enhanced this association. Moreover, mtp53 R273H expression enhanced overall MCM2 levels, promoted cell proliferation, and improved the synergistic cytotoxicity of treatment with the alkylating agent temozolomide in combination with the PARP inhibitor (PARPi) talazoparib. Staining of p53 and PARP1 in breast cancer TMAs and comparison with the TCGA database indicated a higher double-positive signal in basal-like breast cancer than in luminal A or luminal B subtypes. Higher PARP1 protein levels and PAR proteins were detected in mtp53 R273H than in wild-type p53-expressing PDX samples. These results indicate that mtp53 R273H and PARP1 interact with replicating DNA and should be considered as dual biomarkers for identifying breast cancers that may respond to combination PARPi treatments. SIGNIFICANCE: p53 gain-of-function mutant 273H and PARP1 interact with replication forks and could serve as potential biomarkers for breast cancer sensitivity to PARP inhibitors. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/3/394/F1.large.jpg.
Assuntos
Replicação do DNA , DNA de Neoplasias/metabolismo , Mutação com Ganho de Função , Poli(ADP-Ribose) Polimerase-1/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos Alquilantes , Proliferação de Células , DNA de Neoplasias/genética , Feminino , Humanos , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Temozolomida/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismoRESUMO
We recently developed a method for assessing RNA-DNA interactions using proximity ligation assays (PLA). This technique, termed the "RNA-DNA interaction assay" (RDIA), involves differentially labeling DNA and RNA with EdU and BrU, respectively. Once labeled, PLA is performed to assess if the labeled molecules are in close proximity. Here we provide a detailed description of the modified RDIA protocol utilizing currently commercially available BrdU antibodies. As an example, we show its ability to detect nascent transcripts on recently synthesized DNA in both cultured H1299 cells and mouse embryonic stem cells.
Assuntos
DNA , Células-Tronco Embrionárias Murinas/metabolismo , RNA , Animais , Anticorpos/química , Bromodesoxiuridina/química , Linhagem Celular , DNA/química , DNA/metabolismo , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/citologia , RNA/química , RNA/metabolismoRESUMO
The evolutionary conserved SET domain is present in many eukaryotic chromatin-associated proteins, including some members of the trithorax (TrxG) group and the polycomb (PcG) group of epigenetic transcriptional regulators and modifiers of position effect variegation. All SET domains examined exhibited histone lysine methyltransferase activity, implicating these proteins in the generation of epigenetic marks. However, the mode of the initial recruitment of SET proteins to target genes and the way that their association with the genes is maintained after replication are not known. We found that SET-containing proteins of the SET1 and SET2 families contain motifs in the pre-SET region or at the pre-SET-SET and SET-post-SET boundaries which very tightly bind single-stranded DNA (ssDNA) and RNA. These motifs also bind stretches of ssDNA generated by superhelical tension or during the in vitro transcription of duplex DNA. Importantly, such binding withstands nucleosome assembly, interfering with the formation of regular nucleosomal arrays. Two representatives of the SUV39 SET family, SU(VAR)3-9 and G9a, did not bind ssDNA. The trxZ11 homeotic point mutation, which is located within TRX SET and disrupts embryonic development, impairs the ssDNA binding capacity of the protein. We suggest that the motifs described here may be directly involved in the biological function(s) of SET-containing proteins. The binding of single-stranded nucleic acids might play a role in the initial recruitment of the proteins to target genes, in the maintenance of their association after DNA replication, or in sustaining DNA stretches in a single-stranded configuration to allow for continuous transcription.
Assuntos
Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , DNA de Cadeia Simples/metabolismo , DNA Super-Helicoidal/metabolismo , Nucleossomos/metabolismo , Transcrição Gênica/fisiologia , Motivos de Aminoácidos/genética , Motivos de Aminoácidos/fisiologia , Animais , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiologia , Humanos , Mutação/genética , Peptídeos/química , Peptídeos/genética , Peptídeos/fisiologia , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , RNA/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologiaRESUMO
There is growing appreciation for the role of non-coding (nc) RNA in regulation of HOX genes of Drosophila. Our data suggest that current models for activation by ncRNA at the bithorax complex (BX-C) genes are mistaken. We propose that bxd and iab ncRNAs repress coding HOX genes Ultrabithorax and abdominal A, respectively, by transcriptional interference. It is not clear how regulation by non-coding RNAs is integrated with other regulatory mechanisms at HOX loci. We suggest that non-coding RNAs regulated by the trithorax group of epigenetic regulators have an early transient role in repression of HOX genes at the bithorax complex. Later, we propose that repression by HOX proteins, and members of the Polycomb group take over from repression by ncRNAs. We discuss emerging research questions in light of this model.
Assuntos
Drosophila/genética , Expressão Gênica , Genes Homeobox , RNA não Traduzido/genética , Animais , Drosophila/embriologia , Embrião não Mamífero , Modelos Genéticos , RNA não Traduzido/fisiologia , Transcrição GênicaRESUMO
BACKGROUND: Maintenance of cell fate determination requires the Polycomb group for repression; the trithorax group for gene activation; and the enhancer of trithorax and Polycomb (ETP) group for both repression and activation. Additional sex combs (Asx) is a genetically identified ETP for the Hox loci, but the molecular basis of its dual function is unclear. RESULTS: We show that in vitro, Asx binds directly to the SET domains of the histone methyltransferases (HMT) enhancer of zeste [E(z)] (H3K27me3) and Trx (H3K4me3) through a bipartite interaction site separated by 846 amino acid residues. In Drosophila S2 cell nuclei, Asx interacts with E(z) and Trx in vivo. Drosophila Asx is required for repression of heat-shock gene hsp70 and is recruited downstream of the hsp70 promoter. Changes in the levels of H3K4me3 and H3K27me3 downstream of the hsp70 promoter in Asx mutants relative to wild type show that Asx regulates H3K4 and H3K27 trimethylation. CONCLUSIONS: We propose that during transcription Asx modulates the ratio of H3K4me3 to H3K27me3 by selectively recruiting the antagonistic HMTs, E(z) and Trx or other nucleosome-modifying enzymes to hsp70.
Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Choque Térmico HSP70/genética , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Repressoras/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Choque Térmico HSP70/metabolismo , Metilação , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Repressoras/genética , Ativação TranscricionalRESUMO
The role of chromatin structure in lineage commitment of multipotent hematopoietic progenitors (HPCs) is presently unclear. We show here that CD34+ HPCs possess a post-replicative chromatin globally devoid of the repressive histone mark H3K27me3. This H3K27-unmodified chromatin is required for recruitment of lineage-determining transcription factors (TFs) C/EBPα, PU.1, and GATA-1 to DNA just after DNA replication upon cytokine-induced myeloid or erythroid commitment. Blocking DNA replication or increasing H3K27me3 levels prevents recruitment of these TFs to DNA and suppresses cytokine-induced erythroid or myeloid differentiation. However, H3K27me3 is rapidly associated with nascent DNA in more primitive human and murine HPCs. Treatment of these cells with instructive cytokines leads to a significant delay in accumulation of H3K27me3 in nascent chromatin due to activity of the H3K27me3 demethylase UTX. Thus, HPCs utilize special mechanisms of chromatin modification for recruitment of specific TFs to DNA during early stages of lineage specification.
Assuntos
Diferenciação Celular/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Histona Desmetilases com o Domínio Jumonji/genética , Animais , Antígenos CD34/biossíntese , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Linhagem da Célula/genética , Cromatina/genética , Replicação do DNA/genética , Fator de Transcrição GATA1/genética , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Camundongos , Proteínas Proto-Oncogênicas/genética , Transativadores/genéticaRESUMO
Aryl hydrocarbon receptor (AHR) is the key transcription factor that controls animal development and various adaptive processes. The AHR's target genes are involved in biodegradation of endogenous and exogenous toxins, regulation of immune response, organogenesis, and neurogenesis. Ligand binding is important for the activation of the AHR signaling pathway. Invertebrate AHR homologs are activated by endogenous ligands whereas vertebrate AHR can be activated by both endogenous and exogenous ligands (xenobiotics). Several studies using mammalian cultured cells have demonstrated that transcription of the AHR target genes can be activated by exogenous AHR ligands, but little is known about the effects of AHR in a living organism. Here, we examined the effects of human AHR and its ligands using transgenic Drosophila lines with an inducible human AhR gene. We found that exogenous AHR ligands can increase as well as decrease the transcription levels of the AHR target genes, including genes that control proliferation, motility, polarization, and programmed cell death. This suggests that AHR activation may affect the expression of gene networks that could be critical for cancer progression and metastasis. Importantly, we found that AHR target genes are also controlled by the enzymes that modify chromatin structure, in particular components of the epigenetic Polycomb Repressive complexes 1 and 2. Since exogenous AHR ligands (alternatively - xenobiotics) and small molecule inhibitors of epigenetic modifiers are often used as pharmaceutical anticancer drugs, our findings may have significant implications in designing new combinations of therapeutic treatments for oncological diseases.
RESUMO
We describe a proximity ligation assay (PLA)-based method of assessing association of DNA and RNA in single cells during the cell cycle. Pulse-labeling of DNA with EdU and RNA with BrU and testing their close proximity by PLA demonstrates that RNA synthesis in individual cells resumes about 30-45 min after DNA replication. Consistent with this conclusion, RNA Pol II phosphorylated at Ser2 of its CTD is detected at the same time as RNA transcripts on nascent DNA. Our results also show that RNA is associated with DNA foci during all stages of mitosis.