Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Pharmacol Exp Ther ; 371(2): 476-486, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31110114

RESUMO

There is an unmet medical need for nonopioid pain therapies in human populations; several pathways are under investigation for possible therapeutic intervention. Tetrahydrobiopterin (BH4) has received attention recently as a mediator of neuropathic pain. Recent reports have implicated sepiapterin reductase (SPR) in this pain pathway as a regulator of BH4 production. To evaluate the role of SPR inhibition on BH4 reduction, we developed analytical methods to monitor the relationship between the plasma concentration of test article and endogenous pterins and applied these in the rat spinal nerve ligation pain model. Sepiapterin is an endogenous substrate, which accumulates upon inhibition of SPR. In response to a potent inhibitor of SPR, plasma concentrations of sepiapterin increased proportionally with exposure. An indirect-effect pharmacokinetic/pharmacodynamic model was developed to describe the relationship between the plasma pharmacokinetics of test article and plasma sepiapterin levels in the rat, which was used to determine an in vivo SPR IC50 value. SPR inhibition and mechanical allodynia were assessed coordinately with pterin biomarkers in plasma and at the site of neuronal injury (i.e., dorsal root ganglion). Upon daily oral administration for 3 consecutive days, unbound plasma concentrations of test article exceeded the unbound in vivo rat SPR IC90 throughout the dose intervals, leading to a 60% reduction in BH4 in the dorsal root ganglion. Despite evidence for pharmacological modulation of the BH4 pathway, there was no significant effect on the tactile paw withdrawal threshold relative to vehicle-treated controls.


Assuntos
Oxirredutases do Álcool/antagonistas & inibidores , Oxirredutases do Álcool/metabolismo , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Medição da Dor/métodos , Animais , Biopterinas/análogos & derivados , Biopterinas/antagonistas & inibidores , Biopterinas/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Humanos , Hiperalgesia/tratamento farmacológico , Masculino , Neuralgia/tratamento farmacológico , Medição da Dor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Tato/efeitos dos fármacos , Tato/fisiologia
2.
Am J Physiol Gastrointest Liver Physiol ; 314(1): G97-G108, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29025729

RESUMO

Fatty liver disease (FLD), the most common chronic liver disease in the United States, may be caused by alcohol or the metabolic syndrome. Alcohol is oxidized in the cytosol of hepatocytes by alcohol dehydrogenase (ADH), which generates NADH and increases cytosolic NADH/NAD+ ratio. The increased ratio may be important for development of FLD, but our ability to examine this question is hindered by methodological limitations. To address this, we used the genetically encoded fluorescent sensor Peredox to obtain dynamic, real-time measurements of cytosolic NADH/NAD+ ratio in living hepatocytes. Peredox was expressed in dissociated rat hepatocytes and HepG2 cells by transfection, and in mouse liver slices by tail-vein injection of adeno-associated virus (AAV)-encoded sensor. Under control conditions, hepatocytes and liver slices exhibit a relatively low (oxidized) cytosolic NADH/NAD+ ratio as reported by Peredox. The ratio responds rapidly and reversibly to substrates of lactate dehydrogenase (LDH) and sorbitol dehydrogenase (SDH). Ethanol causes a robust dose-dependent increase in cytosolic NADH/NAD+ ratio, and this increase is mitigated by the presence of NAD+-generating substrates of LDH or SDH. In contrast to hepatocytes and slices, HepG2 cells exhibit a relatively high (reduced) ratio and show minimal responses to substrates of ADH and SDH. In slices, we show that comparable results are obtained with epifluorescence imaging and two-photon fluorescence lifetime imaging (2p-FLIM). Live cell imaging with Peredox is a promising new approach to investigate cytosolic NADH/NAD+ ratio in hepatocytes. Imaging in liver slices is particularly attractive because it allows preservation of liver microanatomy and metabolic zonation of hepatocytes. NEW & NOTEWORTHY We describe and validate a new approach for measuring free cytosolic NADH/NAD+ ratio in hepatocytes and liver slices: live cell imaging with the fluorescent biosensor Peredox. This approach yields dynamic, real-time measurements of the ratio in living, functioning liver cells, overcoming many limitations of previous methods for measuring this important redox parameter. The feasibility of using Peredox in liver slices is particularly attractive because slices allow preservation of hepatic microanatomy and metabolic zonation of hepatocytes.


Assuntos
Técnicas Biossensoriais , Citosol/metabolismo , Metabolismo Energético , Hepatócitos/metabolismo , Fígado/metabolismo , Microscopia de Fluorescência por Excitação Multifotônica/métodos , NAD/metabolismo , Animais , Biomarcadores/metabolismo , Feminino , Genes Reporter , Células Hep G2 , Humanos , Técnicas In Vitro , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Masculino , Camundongos Endogâmicos C57BL , Oxirredução , Ratos Endogâmicos Lew , Reprodutibilidade dos Testes , Fatores de Tempo , Transfecção
3.
Biotechnol Bioeng ; 113(1): 241-6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26152452

RESUMO

The development of long-term human organotypic liver-on-a-chip models for successful prediction of toxic response is one of the most important and urgent goals of the NIH/DARPA's initiative to replicate and replace chronic and acute drug testing in animals. For this purpose, we developed a microfluidic chip that consists of two microfluidic chambers separated by a porous membrane. The aim of this communication is to demonstrate the recapitulation of a liver sinusoid-on-a-chip, using human cells only for a period of 28 days. Using a step-by-step method for building a 3D microtissue on-a-chip, we demonstrate that an organotypic in vitro model that reassembles the liver sinusoid microarchitecture can be maintained successfully for a period of 28 days. In addition, higher albumin synthesis (synthetic) and urea excretion (detoxification) were observed under flow compared to static cultures. This human liver-on-a-chip should be further evaluated in drug-related studies.


Assuntos
Fígado/fisiologia , Microfluídica/métodos , Técnicas de Cultura de Órgãos/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Modelos Biológicos , Fatores de Tempo
4.
Arthritis Rheum ; 64(12): 3993-4003, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22933328

RESUMO

OBJECTIVE: The residence time of hyaluronan (HA) in knee joint synovial fluid (SF) was investigated using a rabbit anterior cruciate ligament transection (ACLT) model. The aims of this study were to assess, at 7 and 28 days after surgery, the 1) HA concentration and molecular mass (M(r) ) distribution in the SF, 2) endogenous replenishment of HA after saline washout, 3) HA residence times in the SF, and 4) synovium and subsynovium cellularity of the knee joints of rabbits subjected to ACLT, compared to sham-operated and nonoperated control joints. METHODS: Adult NZW rabbits underwent ACLT or sham surgery on one hind limb, while each contralateral limb was the nonoperated control. On day 7 or 28 after surgery, the joints were aspirated for SF, lavaged with saline, and injected with saline or polydisperse HA, and samples were obtained for analysis at set time points up to 8 hours after injection. Joint fluid samples were analyzed for the concentration and M(r) distribution of HA to calculate the HA residence time constant. RESULTS: Analysis of HA concentrations and M(r) distributions showed 1) loss of high-M(r) HA in the SF on day 7 and a shift toward a lower-M(r) distribution on day 28, 2) endogenous replenishment of high-M(r) HA after washout, and 3) M(r) -dependent loss of HA from the knee joints after ACLT, particularly on day 7 postsurgery. The HA residence time decreased with decreasing HA M(r) (residence time ∼27 hours with an M(r) load of 7,000-2,500 kd, to ∼7 hours with an M(r) load of 250-50 kd). HA residence time also decreased (by ∼70%) in the knee joints on day 7 after ACLT. The subsynovium of the joints subjected to ACLT displayed increased cellularity and neovascularization on days 7 and 28 postsurgery. CONCLUSION: The residence time of HA in the SF is transiently decreased after ACLT, suggesting that a biophysical transport mechanism is responsible for the altered composition of the SF after joint injury or during inflammation.


Assuntos
Ligamento Cruzado Anterior/cirurgia , Fenômenos Biofísicos/fisiologia , Ácido Hialurônico/metabolismo , Articulação do Joelho/cirurgia , Líquido Sinovial/metabolismo , Animais , Fenômenos Biomecânicos , Modelos Animais , Período Pós-Operatório , Coelhos , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Fatores de Tempo
5.
CPT Pharmacometrics Syst Pharmacol ; 10(5): 412-419, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33719204

RESUMO

The development and application of quantitative systems pharmacology models in neuroscience have been modest relative to other fields, such as oncology and immunology, which may reflect the complexity of the brain. Technological and methodological advancements have enhanced the quantitative understanding of brain physiology and pathophysiology and the effects of pharmacological interventions. To maximize the knowledge gained from these novel data types, pharmacometrics modelers may need to expand their toolbox to include additional mathematical and statistical frameworks. A session was held at the 10th annual American Conference on Pharmacometrics (ACoP10) to highlight several recent advancements in quantitative and systems neuroscience. In this mini-review, we provide a brief overview of technological and methodological advancements in the neuroscience therapeutic area that were discussed during the session and how these can be leveraged with quantitative systems pharmacology modeling to enhance our understanding of neurological diseases. Microphysiological systems using human induced pluripotent stem cells (IPSCs), digital biomarkers, and large-scale imaging offer more clinically relevant experimental datasets, enhanced granularity, and a plethora of data to potentially improve the preclinical-to-clinical translation of therapeutics. Network neuroscience methodologies combined with quantitative systems models of neurodegenerative disease could help bridge the gap between cellular and molecular alterations and clinical end points through the integration of information on neural connectomics. Additional topics, such as the neuroimmune system, microbiome, single-cell transcriptomic technologies, and digital device biomarkers, are discussed in brief.


Assuntos
Encéfalo/metabolismo , Descoberta de Drogas , Modelos Biológicos , Farmacologia em Rede , Doenças Neurodegenerativas/tratamento farmacológico , Congressos como Assunto , Humanos
6.
J Pharm Sci ; 110(1): 325-337, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32946896

RESUMO

P-glycoprotein (P-gp) efflux assay is an integral part of discovery screening, especially for drugs requiring brain penetration as P-gp efflux ratio (ER) inversely correlates with brain exposure. However, significant variability in P-gp ER generated across cell lines can lead to misclassification of a P-gp substrate and subsequently disconnect with brain exposure data. We hypothesized that the ER depends on P-gp protein expression level in the in vitro assay. Quantitative proteomics and immunofluorescence staining were utilized to characterize P-gp protein expression and localization in four recombinant cell lines, over-expressing human or mouse P-gp isoforms, followed by functional evaluation. Efflux data generated in each cell line was compared against available rodent brain distribution data. The results suggested that the cell line with highest P-gp expression (hMDCK-MDR1 sourced from NIH) led to greatest dynamic range for efflux; thus, proving to be the most sensitive model to predict brain penetration. Cell lines with lower P-gp expression exhibited the greatest tendency for compound-dependent in vitro efflux saturation leading to false negative results. Ultimately, P-gp kinetics were characterized using a compartmental model to generate system-independent parameters to resolve such discrepancy. This study highlights the need for careful choice of well characterized P-gp in vitro tools and utility of modeling techniques to enable appropriate interpretation of the data.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Descoberta de Drogas , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico , Camundongos , Proteômica
7.
Biotechnol Bioeng ; 106(1): 149-60, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20014439

RESUMO

Synovial fluid (SF) contains lubricant macromolecules, hyaluronan (HA), and proteoglycan 4 (PRG4). The synovium not only contributes lubricants to SF through secretion by synoviocyte lining cells, but also concentrates lubricants in SF due to its semi-permeable nature. A membrane that recapitulates these synovium functions may be useful in a bioreactor system for generating a bioengineered fluid (BF) similar to native SF. The objectives were to analyze expanded polytetrafluoroethylene membranes with pore sizes of 50 nm, 90 nm, 170 nm, and 3 microm in terms of (1) HA and PRG4 secretion rates by adherent synoviocytes, and (2) the extent of HA and PRG4 retention with or without synoviocytes adherent on the membrane. Experiment 1: Synoviocytes were cultured on tissue culture (TC) plastic or membranes +/- IL-1beta + TGF-beta1 + TNF-alpha, a cytokine combination that stimulates lubricant synthesis. HA and PRG4 secretion rates were assessed by analysis of medium. Experiment 2: Bioreactors were fabricated to provide a BF compartment enclosed by membranes +/- adherent synoviocytes, and an external compartment of nutrient fluid (NF). A solution with HA (1 mg/mL, MW ranging from 30 to 4,000 kDa) or PRG4 (50 microg/mL) was added to the BF compartment, and HA and PRG4 loss into the NF compartment after 2, 8, and 24 h was determined. Lubricant loss kinetics were analyzed to estimate membrane permeability. Experiment 1: Cytokine-regulated HA and PRG4 secretion rates on membranes were comparable to those on TC plastic. Experiment 2: Transport of HA and PRG4 across membranes was lowest with 50 nm membranes and highest with 3 microm membranes, and transport of high MW HA was decreased by adherent synoviocytes (for 50 and 90 nm membranes). The permeability to HA mixtures for 50 nm membranes was approximately 20 x 10(-8) cm/s (- cells) and approximately 5 x 10(-8) cm/s (+ cells), for 90 nm membranes was approximately 35 x 10(-8) cm/s (- cells) and approximately 19 x 10(-8) cm/s (+ cells), for 170 nm membranes was approximately 74 x 10(-8) cm/s (+/- cells), and for 3 microm membranes was approximately 139 x 10(-8) cm/s (+/- cells). The permeability of 450 kDa HA was approximately 40x lower than that of 30 kDa HA for 50 nm membranes, but only approximately 2.5x lower for 3 microm membranes. The permeability of 4,000 kDa HA was approximately 250x lower than that of 30 kDa HA for 50 nm membranes, but only approximately 4x lower for 3 microm membranes. The permeability for PRG4 was approximately 4 x 10(-8) cm/s for 50 nm membranes, approximately 48 x 10(-8) cm/s for 90 nm membranes, approximately 144 x 10(-8) cm/s for 170 nm membranes, and approximately 336 x 10(-8) cm/s for 3 microm membranes. The associated loss across membranes after 24 h ranged from 3% to 92% for HA, and from 3% to 93% for PRG4. These results suggest that semi-permeable membranes may be used in a bioreactor system to modulate lubricant retention in a bioengineered SF, and that synoviocytes adherent on the membranes may serve as both a lubricant source and a barrier for lubricant transport.


Assuntos
Reatores Biológicos , Ácido Hialurônico/isolamento & purificação , Membranas , Permeabilidade , Proteoglicanas/isolamento & purificação , Líquido Sinovial/química , Ultrafiltração/métodos , Biomimética , Lubrificantes/isolamento & purificação
8.
J Appl Physiol (1985) ; 105(2): 621-8, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18535138

RESUMO

The hydraulic conductivity of a connective tissue is determined both by the fine ultrastructure of the extracellular matrix and the effects of larger particles in the interstitial space. In this study, we explored this relationship by examining the effects of 30- or 90-nm-diameter latex nanospheres or low-density lipoproteins (LDL) on the hydraulic conductivity of Matrigel, a basement membrane matrix. The hydraulic conductivity of Matrigel with latex nanospheres or LDL particles added at 4.8% weight fraction was measured and compared with the hydraulic conductivity of Matrigel alone. The LDL-derived lipids in the gel were visualized by transmission electron microscopy and were seen to have aggregated into particles up to 500 nm in size. The addition of these materials to the medium markedly decreased its hydraulic conductivity, with the LDL-derived lipids having a much larger effect than did the latex nanospheres. Debye-Brinkman theory was used to predict the effect of addition of particles to the hydraulic conductivity of the medium. The theoretical predictions matched well with the results from adding latex nanospheres to the medium. However, LDL decreased hydraulic conductivity much more than was predicted by the theory. The validation of the theoretical model for rigid particles embedded in extracellular matrix suggests that it could be used to make predictions about the influence of particulates (e.g., collagen, elastin, cells) on the hydraulic conductivity of the fine filamentous matrix (the proteoglycans) in connective tissues. In addition, the larger-than-predicted effects of lipidlike particles on hydraulic conductivity may magnify the pathology associated with lipid accumulation, such as in Bruch's membrane of the retina during macular degeneration and the blood vessel wall in atherosclerosis.


Assuntos
Materiais Biocompatíveis , Colágeno , Laminina , Lipídeos/química , Material Particulado/química , Proteoglicanas , Combinação de Medicamentos , Humanos , Látex , Lipoproteínas LDL/química , Microscopia Eletrônica , Modelos Estatísticos , Reologia , Viscosidade
9.
Biorheology ; 44(5-6): 303-17, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18401073

RESUMO

In this study, we measured the specific hydraulic conductivity (K) of Matrigel at 1% and 2% concentrations as a function of perfusion pressure (0 to 100 mmHg) and compared the results to predictions from two models: a fiber matrix model that predicted K of the gel based upon its composition, and a biphasic model that predicted changes in K caused by pressure induced compaction of the gels. The extent of gel compaction as a function of perfusion pressure was also assessed, allowing us to estimate the stiffness of the gels. As expected, 2% Matrigel had a lower K and a higher stiffness than did 1% Matrigel. Measured values of K of both 1% and 2% Matrigel samples showed good agreement with the predictions of the fiber matrix model. Pressure-induced changes in K were better described by the biphasic model than a model in which uniform compression of the gel was assumed. We conclude that K of multi-component gels, such as Matrigel can be well characterized by fiber matrix models, and that pressure-induced changes in K of such gels can be well characterized by biphasic models.


Assuntos
Colágeno/química , Laminina/química , Modelos Biológicos , Proteoglicanas/química , Animais , Membrana Basal/fisiologia , Combinação de Medicamentos , Pressão , Reologia
10.
Sci Rep ; 6: 26868, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27240736

RESUMO

In vitro liver models have been important tools for more than 40 years for academic research and preclinical toxicity screening by the pharmaceutical industry. Hepatocytes, the highly metabolic parenchymal cells of the liver, are efficient at different metabolic chemistries depending on their relative spatial location along the sinusoid from the portal triad to the central vein. Although replicating hepatocyte metabolic zonation is vitally important for physiologically-relevant in vitro liver tissue and organ models, it is most often completely overlooked. Here, we demonstrate the creation of spatially-controlled zonation across multiple hepatocyte metabolism levels through the application of precise concentration gradients of exogenous hormone (insulin and glucagon) and chemical (3-methylcholanthrene) induction agents in a microfluidic device. Observed gradients in glycogen storage via periodic acid-Schiff staining, urea production via carbamoyl phosphatase synthetase I staining, and cell viability after exposure to allyl alcohol and acetaminophen demonstrated the in vitro creation of hepatocyte carbohydrate, nitrogen, alcohol degradation, and drug conjugation metabolic zonation. This type of advanced control system will be crucial for studies evaluating drug metabolism and toxicology using in vitro constructs.


Assuntos
Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Hepatócitos/metabolismo , Acetaminofen/metabolismo , Animais , Células Cultivadas , Etanol/metabolismo , Feminino , Glucagon/farmacologia , Glucose/metabolismo , Hepatócitos/efeitos dos fármacos , Insulina/farmacologia , Dispositivos Lab-On-A-Chip , Metilcolantreno/farmacologia , Microtecnologia , Nitrogênio/metabolismo , Ratos Endogâmicos Lew
11.
Technology (Singap World Sci) ; 3(4): 155-162, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26925437

RESUMO

To evaluate drug and metabolite efficacy on a target organ, it is essential to include metabolic function of hepatocytes, and to evaluate metabolite influence on both hepatocytes and the target of interest. Herein, we have developed a two-chamber microfabricated device separated by a membrane enabling communication between hepatocytes and cancer cells. The microscale environment created enables cell co-culture in a low media-to-cell ratio leading to higher metabolite formation and rapid accumulation, which is lost in traditional plate cultures or other interconnected models due to higher culture volumes. We demonstrate the efficacy of this system by metabolism of tegafur by hepatocytes resulting in cancer cell toxicity.

12.
J Vis Exp ; (103)2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26485274

RESUMO

Although microfluidics provides exquisite control of the cellular microenvironment, culturing cells within microfluidic devices can be challenging. 3D culture of cells in collagen type I gels helps to stabilize cell morphology and function, which is necessary for creating microfluidic tissue models in microdevices. Translating traditional 3D culture techniques for tissue culture plates to microfluidic devices is often difficult because of the limited channel dimensions. In this method, we describe a technique for modifying native type I collagen to generate polycationic and polyanionic collagen solutions that can be used with layer-by-layer deposition to create ultrathin collagen assemblies on top of cells cultured in microfluidic devices. These thin collagen layers stabilize cell morphology and function, as shown using primary hepatocytes as an example cell, allowing for the long term culture of microtissues in microfluidic devices.


Assuntos
Técnicas de Cultura de Células/instrumentação , Colágeno Tipo I/química , Dispositivos Lab-On-A-Chip , Animais , Técnicas de Cultura de Células/métodos , Microambiente Celular/fisiologia , Géis/química , Hepatócitos/citologia , Humanos , Microfluídica/métodos , Ratos
13.
Tissue Eng Part C Methods ; 21(4): 413-22, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25233394

RESUMO

Hepatocytes and their in vitro models are essential tools for preclinical screening studies for drugs that affect the liver. Most of the current models primarily focus on hepatocytes alone and lack the contribution of non-parenchymal cells (NPCs), which are significant through both molecular and the response of the NPCs themselves. Models that incorporate NPCs alongside hepatocytes hold the power to enable more realistic recapitulation and elucidation of cell interactions and cumulative drug response. Hepatocytes and liver sinusoidal endothelial cells (LSECs) account for ∼ 80% of the liver mass where the LSECs line the walls of blood vessels, and act as a barrier between hepatocytes and blood. Culturing LSECs with hepatocytes to generate multicellular physiologically relevant in vitro liver models has been a major hurdle since LSECs lose their phenotype rapidly after isolation. To this end, we describe the application of collagen gel (1) in a sandwich and (2) as an intervening extracellular matrix layer to coculture hepatocytes with LSECs for extended periods. These coculture configurations provide environments wherein hepatocyte and LSECs, through cell-cell contacts and/or secretion factors, lead to enhanced function and stability of the cocultures. Our results show that in these configurations, hepatocytes and LSECs maintained their phenotypes when cultured together as a mixture, and showed stable secretion and metabolic activity for up to 4 weeks. Immunostaining for sinusoidal endothelial 1 (SE-1) antibody demonstrated retention of LSEC phenotype during the culture period. In addition, LSECs cultured alone maintained high viability and SE-1 expression when cultured within a collagen sandwich configuration up to 4 weeks. Albumin production of the cocultures was 10-15 times higher when LSECs were cultured as a bottom layer (with an intervening collagen layer) and as a mixture in a sandwich configuration, and native CYP 1A1/2 activity was at least 20 times higher than monoculture controls. Together, these data suggest that collagen gel-based hepatocyte-LSEC cocultures are highly suitable models for stabilization and long-term culture of both cell types. In summary, these results indicate that collagen gel-based hepatocyte-LSEC coculture models are promising for in vitro toxicity testing, and liver model development studies.


Assuntos
Comunicação Celular , Técnicas de Cocultura/métodos , Células Endoteliais , Hepatócitos , Fígado , Modelos Biológicos , Animais , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Hepatócitos/citologia , Hepatócitos/metabolismo , Fígado/citologia , Fígado/metabolismo , Ratos , Ratos Endogâmicos Lew , Fatores de Tempo
14.
Lab Chip ; 14(12): 2033-9, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24770663

RESUMO

The creation of stable flow cultures of hepatocytes is highly desirable for the development of platforms for drug toxicity screening, bio-artificial liver support devices, and models for investigating liver physiology and pathophysiology. Given that hepatocytes cultured using the collagen overlay or in 'sandwich' configuration maintain a wide range of differentiated functions, we describe a simple method for adapting this culture configuration within a microfluidic device. The device design consists of a porous membrane sandwiched between two layers of PDMS resulting in a two-chambered device. In the bottom chamber, hepatocytes are cultured in the collagen sandwich configuration, while the top chamber is accessible for flow. We demonstrate that hepatocytes cultured under flow exhibit higher albumin and urea secretions and induce cytochrome P450 1A1 activity in comparison to static cultures. Furthermore, over two weeks, hepatocytes cultured under flow show a well-connected cellular network with bile canaliculi formation, whereas static cultures show formation of gaps in the cellular network that progressively increase over time. Although enhanced functional response of hepatocytes cultured under flow has been observed in multiple prior studies, the exact mechanism for this flow induced effect remains unknown. In our work, we identified that hepatocytes secrete a higher level of collagen in the flow cultures; inhibiting collagen secretion within the flow cultures reduced albumin secretion and restored the appearance of gaps in the cellular network similar to the static cultures. These results demonstrate the importance of the increased collagen secretion by hepatocytes cultured under flow as a mechanism to maintain a well-connected cellular network and a differentiated function.


Assuntos
Técnicas de Cultura de Células , Hepatócitos/citologia , Técnicas Analíticas Microfluídicas , Animais , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Células Cultivadas , Colágeno/química , Citocromo P-450 CYP1A1/metabolismo , Dimetilpolisiloxanos/química , Feminino , Hepatócitos/metabolismo , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Nylons/química , Ratos , Ratos Endogâmicos Lew , Albumina Sérica/metabolismo , Ureia/metabolismo
15.
Technology (Singap World Sci) ; 2(1): 67-74, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24932459

RESUMO

The creation of stable hepatocyte cultures using cell-matrix interactions has proven difficult in microdevices due to dimensional constraints limiting the utility of classic tissue culture techniques that involve the use of hydrogels such as the collagen "double gel" or "overlay". To translate the collagen overlay technique into microdevices, we modified collagen using succinylation and methylation reactions to create polyanionic and polycationic collagen solutions, and deposited them layer-by-layer to create ultrathin collagen nanolayers on hepatocytes. These ultrathin collagen layers covered hepatocytes in microdevices and 1) maintained cell morphology, viability, and polarity, 2) induced bile canalicular formation and actin reorganization, and 3) maintained albumin and urea secretions and CYP activity similar to those observed in hepatocytes in collagen double gel hepatocytes in plate cultures. Beyond the immediate applications of this technique to create stable, in vitro microfluidic hepatocyte cultures for drug toxicity testing, this technique is generally applicable as a thin biomaterial for other 3D microtissues.

16.
Exp Biol Med (Maywood) ; 239(9): 1180-1191, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24764241

RESUMO

The liver is a heterogeneous organ with many vital functions, including metabolism of pharmaceutical drugs and is highly susceptible to injury from these substances. The etiology of drug-induced liver disease is still debated although generally regarded as a continuum between an activated immune response and hepatocyte metabolic dysfunction, most often resulting from an intermediate reactive metabolite. This debate stems from the fact that current animal and in vitro models provide limited physiologically relevant information, and their shortcomings have resulted in "silent" hepatotoxic drugs being introduced into clinical trials, garnering huge financial losses for drug companies through withdrawals and late stage clinical failures. As we advance our understanding into the molecular processes leading to liver injury, it is increasingly clear that (a) the pathologic lesion is not only due to liver parenchyma but is also due to the interactions between the hepatocytes and the resident liver immune cells, stellate cells, and endothelial cells; and (b) animal models do not reflect the human cell interactions. Therefore, a predictive human, in vitro model must address the interactions between the major human liver cell types and measure key determinants of injury such as the dosage and metabolism of the drug, the stress response, cholestatic effect, and the immune and fibrotic response. In this mini-review, we first discuss the current state of macro-scale in vitro liver culture systems with examples that have been commercialized. We then introduce the paradigm of microfluidic culture systems that aim to mimic the liver with physiologically relevant dimensions, cellular structure, perfusion, and mass transport by taking advantage of micro and nanofabrication technologies. We review the most prominent liver-on-a-chip platforms in terms of their physiological relevance and drug response. We conclude with a commentary on other critical advances such as the deployment of fluorescence-based biosensors to identify relevant toxicity pathways, as well as computational models to create a predictive tool.


Assuntos
Técnicas Biossensoriais , Avaliação Pré-Clínica de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Hepatócitos , Fígado , Técnicas Analíticas Microfluídicas , Modelos Biológicos , Animais , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Avaliação Pré-Clínica de Medicamentos/instrumentação , Avaliação Pré-Clínica de Medicamentos/métodos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos
17.
Stem Cell Res Ther ; 4 Suppl 1: S16, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24565476

RESUMO

Although the process of drug development requires efficacy and toxicity testing in animals prior to human testing, animal models have limited ability to accurately predict human responses to xenobiotics and other insults. Societal pressures are also focusing on reduction of and, ultimately, replacement of animal testing. However, a variety of in vitro models, explored over the last decade, have not been powerful enough to replace animal models. New initiatives sponsored by several US federal agencies seek to address this problem by funding the development of physiologically relevant human organ models on microscopic chips. The eventual goal is to simulate a human-on-a-chip, by interconnecting the organ models, thereby replacing animal testing in drug discovery and development. As part of this initiative, we aim to build a three-dimensional human liver chip that mimics the acinus, the smallest functional unit of the liver, including its oxygen gradient. Our liver-on-a-chip platform will deliver a microfluidic three-dimensional co-culture environment with stable synthetic and enzymatic function for at least 4 weeks. Sentinel cells that contain fluorescent biosensors will be integrated into the chip to provide multiplexed, real-time readouts of key liver functions and pathology. We are also developing a database to manage experimental data and harness external information to interpret the multimodal data and create a predictive platform.


Assuntos
Hepatócitos/citologia , Animais , Antifibrinolíticos/toxicidade , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Células de Kupffer/citologia , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos
18.
Artigo em Inglês | MEDLINE | ID: mdl-21826801

RESUMO

The synovial joint contains synovial fluid (SF) within a cavity bounded by articular cartilage and synovium. SF is a viscous fluid that has lubrication, metabolic, and regulatory functions within synovial joints. SF contains lubricant molecules, including proteoglycan-4 and hyaluronan. SF is an ultrafiltrate of plasma with secreted contributions from cell populations lining and within the synovial joint space, including chondrocytes and synoviocytes. Maintenance of normal SF lubricant composition and function are important for joint homeostasis. In osteoarthritis, rheumatoid arthritis, and joint injury, changes in lubricant composition and function accompany alterations in the cytokine and growth factor environment and increased fluid and molecular transport through joint tissues. Thus, understanding the synovial joint lubrication system requires a multifaceted study of the various parts of the synovial joint and their interactions. Systems biology approaches at multiple scales are being used to describe the molecular, cellular, and tissue components and their interactions that comprise the functioning synovial joint. Analyses of the transcriptome and proteome of SF, cartilage, and synovium suggest that particular molecules and pathways play important roles in joint homeostasis and disease. Such information may be integrated with physicochemical tissue descriptions to construct integrative models of the synovial joint that ultimately may explain maintenance of health, recovery from injury, or development and progression of arthritis.


Assuntos
Artrite/fisiopatologia , Articulações/fisiologia , Líquido Sinovial/fisiologia , Biologia de Sistemas/métodos , Animais , Transporte Biológico/fisiologia , Feminino , Humanos , Articulações/lesões , Masculino , Camundongos , Modelos Biológicos , Peptídeo Hidrolases/análise , Proteômica , Ratos , Líquido Sinovial/química , Líquido Sinovial/metabolismo
19.
J Biomech ; 44(16): 2761-7, 2011 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-21945567

RESUMO

Diarthrodial joints are freely moveable joints containing synovial fluid (SF) within a connective tissue joint capsule that allows for low-friction and low-wear articulation of the cartilaginous ends of long bones. Biomechanical cues from joint articulation regulate synoviocyte and cartilage biology via joint capsule strain, in turn altering the composition of SF. Joint flexion is clinically associated with pain in knees with arthritis and effusion, with the nociception possibly originating from joint capsule strain. The hypothesis of this study was that knee fluid volume distribution and joint capsule strain are altered with passive flexion in the rabbit model. The aims were to (a) determine the volume distribution of fluid in the joint at different total volumes and with flexion of rabbit knees ex vivo, (b) correlate the volume distribution for the ex vivo model to in vivo data, and (c) determine the strains at different locations in the joint capsule with flexion. During knee flexion, ∼20% of anteriorly located joint fluid moved posteriorly, correlating well with the fluid motion observed in in vivo joints. Planar joint capsule principal strains were ∼100% (tension) in the proximal-distal direction and ∼-40% (shortening) in the circumferential direction, relative to the femur axis and 30° strain state. The joint capsule strains with flexion are consistent with the mechanics of the tendons and ligaments from which the capsule tissue is derived. The movement and mixing of SF volume with flexion determine the mechanical and biological fluid environment within the knee joint. Joint fluid movement and capsular strains affect synovial cell biology and likely modulate trans-synovial transport.


Assuntos
Hidrodinâmica , Articulação do Joelho/fisiologia , Estresse Fisiológico/fisiologia , Líquido Sinovial/fisiologia , Animais , Coelhos
20.
J Orthop Res ; 29(2): 240-6, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21226237

RESUMO

Synovial fluid (SF) is a viscous ultrafiltrate of plasma that lubricates articulating joint motion. During acute trauma and certain cartilage repair procedures, blood is introduced into the joint and mixes with variable amounts of SF. The hypothesis of this study was that the dilution of blood with SF alters the rheological properties of the blood and the mechanical properties of the clot formed. The objectives were to determine the composition (solid fraction, protein content), coagulation (fibrin polymerization time, torsional strength), and mechanical (stiffness, permeability) properties of mixtures of blood with 10% or 50%SF.While the initial stages of coagulation of blood were not markedly affected by the presence of the SF, dilution with SF altered the coagulation torque profile over time, decreased the final clot structure mechanical stiffness (42­90% decrease), and increased the fluid permeability of the clots (41- to 468-fold). Compared to diluting blood with PBS, SF had a smaller effect on the mechanical properties of the clot, possibly due to the presence of high molecular weight hyaluronan. These properties of blood/SF mixtures may facilitate an understanding of the repair environment in the joint and of mechanisms of cartilage repair.


Assuntos
Coagulação Sanguínea , Sangue , Hemorreologia , Líquido Sinovial , Animais , Fenômenos Biomecânicos , Bovinos , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA