Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 117(3): 886-893, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31788779

RESUMO

Optogenetic tools for controlling gene expression are ideal for tuning synthetic biological networks due to the exquisite spatiotemporal control available with light. Here we develop an optogenetic system for gene expression control integrated with an existing yeast toolkit allowing for rapid, modular assembly of light-controlled circuits in the important chassis organism Saccharomyces cerevisiae. We reconstitute activity of a split synthetic zinc-finger transcription factor (TF) using light-induced dimerization mediated by the proteins CRY2 and CIB1. We optimize function of this split TF and demonstrate the utility of the toolkit workflow by assembling cassettes expressing the TF activation domain and DNA-binding domain at different levels. Utilizing this TF and a synthetic promoter we demonstrate that light intensity and duty cycle can be used to modulate gene expression over the range currently available from natural yeast promoters. This study allows for rapid generation and prototyping of optogenetic circuits to control gene expression in S. cerevisiae.


Assuntos
Regulação Fúngica da Expressão Gênica , Optogenética/métodos , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Clonagem Molecular , Criptocromos/genética , Criptocromos/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco/genética
2.
PLoS Biol ; 15(12): e2004050, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29240790

RESUMO

From bacteria to humans, individual cells within isogenic populations can show significant variation in stress tolerance, but the nature of this heterogeneity is not clear. To investigate this, we used single-cell RNA sequencing to quantify transcript heterogeneity in single Saccharomyces cerevisiae cells treated with and without salt stress to explore population variation and identify cellular covariates that influence the stress-responsive transcriptome. Leveraging the extensive knowledge of yeast transcriptional regulation, we uncovered significant regulatory variation in individual yeast cells, both before and after stress. We also discovered that a subset of cells appears to decouple expression of ribosomal protein genes from the environmental stress response in a manner partly correlated with the cell cycle but unrelated to the yeast ultradian metabolic cycle. Live-cell imaging of cells expressing pairs of fluorescent regulators, including the transcription factor Msn2 with Dot6, Sfp1, or MAP kinase Hog1, revealed both coordinated and decoupled nucleocytoplasmic shuttling. Together with transcriptomic analysis, our results suggest that cells maintain a cellular filter against decoupled bursts of transcription factor activation but mount a stress response upon coordinated regulation, even in a subset of unstressed cells.


Assuntos
Saccharomyces cerevisiae/fisiologia , Cloreto de Sódio/farmacologia , Estresse Fisiológico , Variação Genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Análise de Sequência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Transcriptoma
3.
Dermatol Surg ; 46(8): 1068-1077, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31895254

RESUMO

BACKGROUND: In the past 5 years, several absorbable sutures for use in minimally invasive suture lifts have appeared on the market. These newer sutures were preceded by several iterations of nonabsorbable counterparts, all of which were eventually removed from the market because of complications. OBJECTIVE: This review will provide a history of suture lift experience, review the published evidence on the safety and efficacy of currently available absorbable suture lift materials, and detail the clinical experience of the authors using these products. MATERIALS AND METHODS: A review of relevant clinical terms was performed on PUBMED and MEDLINE databases. All articles were reviewed, and further studies examined from citations of selected articles. Articles that focused on suture lifting using extensive dissection were excluded. RESULTS: Twelve studies detailed the results of absorbable suture lifting largely through patient satisfaction surveys or retrospective chart review of cases. No randomized controlled studies were available. CONCLUSION: Data on suture lifting are limited, with largely descriptive and retrospective case reports available in the literature entailed Oxford Centre evidence-based medicine Levels 2a to 5. Based on the available data, suture lifting appears to be safe and well tolerated, with patient satisfaction similar to or above that reported for other noninvasive lifting and tightening procedures. However, due to the lack of randomized controlled trials, the authors give the suture lifting Strength of Recommendation Level C. Further controlled studies are necessary to determine efficacy, longevity, and safety of this technology.


Assuntos
Ritidoplastia/instrumentação , Suturas , Implantes Absorvíveis , Caproatos , Face , Humanos , Lactonas , Procedimentos Cirúrgicos Minimamente Invasivos/instrumentação , Pescoço , Satisfação do Paciente , Seleção de Pacientes , Polidioxanona , Poliésteres , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polipropilenos , Ritidoplastia/efeitos adversos , Ritidoplastia/métodos , Técnicas de Sutura , Suturas/efeitos adversos
5.
Proc Natl Acad Sci U S A ; 110(14): 5725-30, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23493557

RESUMO

Regulation of the cellular volume is fundamental for cell survival and function. Deviations from equilibrium trigger dedicated signaling and transcriptional responses that mediate water homeostasis and volume recovery. Cells are densely packed with proteins, and molecular crowding may play an important role in cellular processes. Indeed, increasing molecular crowding has been shown to modify the kinetics of biochemical reactions in vitro; however, the effects of molecular crowding in living cells are mostly unexplored. Here, we report that, in yeast, a sudden reduction in cellular volume, induced by severe osmotic stress, slows down the dynamics of several signaling cascades, including the stress-response pathways required for osmotic adaptation. We show that increasing osmotic compression decreases protein mobility and can eventually lead to a dramatic stalling of several unrelated signaling and cellular processes. The rate of these cellular processes decreased exponentially with protein density when approaching stalling osmotic compression. This suggests that, under compression, the cytoplasm behaves as a soft colloid undergoing a glass transition. Our results shed light on the physical mechanisms that force cells to cope with volume fluctuations to maintain an optimal protein density compatible with cellular functions.


Assuntos
Adaptação Fisiológica/fisiologia , Citoplasma/química , Proteínas Fúngicas/análise , Pressão Osmótica/fisiologia , Transdução de Sinais/fisiologia , Leveduras/citologia , Biofísica , Western Blotting , Eletroforese em Gel de Poliacrilamida , Recuperação de Fluorescência Após Fotodegradação , Homeostase/fisiologia , Cinética , Modelos Biológicos , Água/metabolismo
6.
Nat Genet ; 39(3): 409-14, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17259986

RESUMO

Cells must respond specifically to different environmental stimuli in order to survive. The signal transduction pathways involved in sensing these stimuli often share the same or homologous proteins. Despite potential cross-wiring, cells show specificity of response. We show, through modeling, that the physiological response of such pathways exposed to simultaneous and temporally ordered inputs can demonstrate system-level mechanisms by which pathways achieve specificity. We apply these results to the hyperosmolar and pheromone mitogen-activated protein (MAP) kinase pathways in the yeast Saccharomyces cerevisiae. These two pathways specifically sense osmolar and pheromone signals, despite sharing a MAPKKK, Ste11, and having homologous MAPKs (Fus3 and Hog1). We show that in a single cell, the pathways are bistable over a range of inputs, and the cell responds to only one stimulus even when exposed to both. Our results imply that these pathways achieve specificity by filtering out spurious cross-talk through mutual inhibition. The variability between cells allows for heterogeneity of the decisions.


Assuntos
Sistema de Sinalização das MAP Quinases , Saccharomyces cerevisiae/enzimologia , Modelos Biológicos , Feromônios/farmacologia , Receptor Cross-Talk
7.
J Neurochem ; 132(1): 32-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25376903

RESUMO

Based on the outcome of a number of experimental studies, progesterone (PROG) holds promise as a new therapy for stroke. To understand more about the mechanisms involved, we administered PROG (or the major metabolite, allopregnanolone, ALLO), intra-peritoneally, for a period of 24 h after transient middle cerebral artery occlusion to male mice variably expressing intracellular progesterone receptors (iPR) A/B. Effects on infarct volume and neurogenesis were then assessed up to 1 month later. Predictably, infarct volume in wild-type mice receiving either drug was significantly smaller. However, mice heterozygous for iPRs A/B showed protection by ALLO but not by PROG. There was robust amplification of cell division in the wall of the lateral ventricle on the injured side of the brain, these cells migrated into the striatum and lateral cortex, and a significant number survived for at least 3 weeks. However, very few doublecortin-positive cells emerged from the subventricular zone and subsequent expression of NeuN in these newborn neurons was extremely rare. Neither PROG nor ALLO amplified the rate of neurogenesis, suggesting that the long-term benefits of acute drug administration results from tissue preservation. Male mice derive long-lasting benefit from progesterone and allopregnanolone after ischemic stroke. In mice heterozygous for iPRs, only allopregnanolone proved effective, suggesting distinct mechanisms. Abundant newborn cells were found in the wall of the lateral ventricle on the injured side (many doublecortin-positive), some migrated into the striatum and lateral cortex, but very few survived as mature neurons. Neurosteroid administration did not amplify this process.


Assuntos
Anti-Inflamatórios/farmacologia , Neurogênese/efeitos dos fármacos , Pregnanolona/farmacologia , Progesterona/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Progesterona/efeitos dos fármacos , Resultado do Tratamento
9.
J Neurochem ; 129(3): 509-15, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24147654

RESUMO

The administration of pan histone deacetylase (HDAC) inhibitors reduces ischemic damage to the CNS, both in vitro and in animal models of stroke, via mechanisms which we are beginning to understand. The acetylation of p53 is regulated by Class I HDACs and, because p53 appears to play a role in ischemic pathology, the purpose of this study was to discover, using an in vitro white matter ischemia model and an in vivo cerebral ischemia model, if neuroprotection mediated by HDAC inhibition depended on p53 expression. Optic nerves were excised from wild-type and p53-deficient mice, and then subjected to oxygen-glucose deprivation in the presence and absence of a specific inhibitor of Class I HDACs (MS-275, entinostat) while compound action potentials were recorded. Furthermore, transient focal ischemia was imposed on wild-type and p53-deficient mice, which were subsequently treated with MS-275. Interestingly, and in both scenarios, the beneficial effects of MS-275 were most pronounced when p53 was absent. These results suggest that modulation of p53 activity is not responsible for MS-275-mediated neuroprotection, and further illustrate how HDAC inhibitors variably influence p53 and associated apoptotic pathways. Optic nerves from wild-type and p53-deficient mice, engineered to express cyan fluorescent protein (CFP) in neuronal mitochondria, were subjected to oxygen-glucose deprivation (OGD) in the presence and absence of a specific inhibitor of Class I histone deacetylases. The protective effect of MS-275 was evidenced by mitochondrial preservation, and this was most pronounced in the absence of p53.


Assuntos
Benzamidas/farmacologia , Isquemia Encefálica/metabolismo , Fármacos Neuroprotetores/farmacologia , Piridinas/farmacologia , Proteína Supressora de Tumor p53/deficiência , Potenciais de Ação/efeitos dos fármacos , Animais , Western Blotting , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/efeitos dos fármacos , Histona Desacetilases/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nervo Óptico/efeitos dos fármacos , Nervo Óptico/patologia
10.
mSystems ; 9(6): e0005024, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38747597

RESUMO

The ability to modify and control natural and engineered microbiomes is essential for biotechnology and biomedicine. Fungi are critical members of most microbiomes, yet technology for modifying the fungal members of a microbiome has lagged far behind that for bacteria. Interdomain conjugation (IDC) is a promising approach, as DNA transfer from bacterial cells to yeast enables in situ modification. While such genetic transfers have been known to naturally occur in a wide range of eukaryotes and are thought to contribute to their evolution, IDC has been understudied as a technique to control fungal or fungal-bacterial consortia. One major obstacle to the widespread use of IDC is its limited efficiency. In this work, we manipulated metabolic and physical interactions between genetically tractable Escherichia coli and Saccharomyces cerevisiae to control the incidence of IDC. We test the landscape of population interactions between the bacterial donors and yeast recipients to find that bacterial commensalism leads to maximized IDC, both in culture and in mixed colonies. We demonstrate the capacity of cell-to-cell binding via mannoproteins to assist both IDC incidence and bacterial commensalism in culture and model how these tunable controls can predictably yield a range of IDC outcomes. Furthermore, we demonstrate that these controls can be utilized to irreversibly alter a recipient yeast population, by both "rescuing" a poor-growing recipient population and collapsing a stable population via a novel IDC-mediated CRISPR/Cas9 system.IMPORTANCEFungi are important but often unaddressed members of most natural and synthetic microbial communities. This work highlights opportunities for modifying yeast microbiome populations through bacterial conjugation. While conjugation has been recognized for its capacity to deliver engineerable DNA to a range of cells, its dependence on cell contact has limited its efficiency. Here, we find "knobs" to control DNA transfer, by engineering the metabolic dependence between bacterial donors and yeast recipients and by changing their ability to physically adhere to each other. Importantly, we functionally validate these "knobs" by irreversibly altering yeast populations. We use these controls to "rescue" a failing yeast population, demonstrate the capacity of conjugated CRISPR/Cas9 to depress or collapse populations, and show that conjugation can be easily interrupted by disrupting cell-to-cell binding. These results offer building blocks toward in situ mycobiome editing, with significant implications for clinical treatments of fungal pathogens and other fungal system engineering.


Assuntos
Escherichia coli , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Conjugação Genética
11.
STAR Protoc ; 5(3): 103002, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003745

RESUMO

Gene promoters filter transcription factor (TF) localization dynamics and changes in the DNA binding affinity of TFs. Here, we present a protocol to probe how promoters decode TF dynamics in Saccharomyces cerevisiae by combining optogenetic control with microscopy. We describe steps for preparing and characterizing a light delivery platform and light-controlled TF mutants. We then detail procedures for subjecting the TFs to light doses that generate defined patterns of localization while measuring fluorescent reporter gene activation via live-cell microscopy. For complete details on the use and execution of this protocol, please refer to Sweeney and McClean.1.

12.
MicroPubl Biol ; 20242024.
Artigo em Inglês | MEDLINE | ID: mdl-38371319

RESUMO

Optogenetics is a powerful tool that uses light to control cellular behavior. Here we enhance high-throughput characterization of optogenetic experiments through the integration of the LED Illumination Tool for Optogenetic Stimulation (LITOS) with the previously published automated platform Lustro. Lustro enables efficient high-throughput screening and characterization of optogenetic systems. The initial iteration of Lustro used the optoPlate illumination device for light induction, with the robot periodically moving the plate over to a shaking device to resuspend cell cultures. Here, we designed a 3D-printed adaptor, rendering LITOS compatible with the BioShake 3000-T ELM used in Lustro. This novel setup allows for concurrent light stimulation and culture agitation, streamlining experiments. Our study demonstrates comparable growth rates between constant and intermittent shaking of Saccharomyces cerevisiae liquid cultures. While the light intensity of the LITOS is not as bright as the optoPlate used in the previous iteration of Lustro, the constant shaking increased the maturation rate of the mScarlet-I fluorescent reporter used. Only a marginal increase in temperature was observed when using the modified LITOS equipped with the 3D-printed adaptor. Our findings show that the integration of LITOS onto a plate shaker allows for constant culture shaking and illumination compatible with laboratory automation platforms, such as Lustro.

13.
mBio ; 15(8): e0102124, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38940616

RESUMO

The purine nucleotides ATP and GTP are made from the common precursor inosine monophosphate (IMP). Maintaining the correct balance of these nucleotides for optimal cell growth is controlled in part by the enzyme IMP dehydrogenase (IMPDH), which catalyzes the first dedicated step of GTP biosynthesis. The regulation of IMPDH mRNA and protein levels in the yeast S. cerevisiae grown in liquid culture has been studied in some detail, but regulation of IMPDH protein under conditions of cellular crowding on a solid substrate has not been examined. Here, we report real-time, live-cell analysis of the accumulation of the Imd2 isoform of IMPDH in yeast cells forming a monolayer colony in a microfluidic device over a 50-hour time course. We observe two distinct phases of increased Imd2 accumulation: a guanine-insensitive phase early in outgrowth and a guanine-sensitive phase later, when cells become crowded. We show that the IMPDH inhibitor mycophenolic acid enhances both phases of increase. Deletion of a transcription attenuator upstream of the mRNA start site that decreases Imd2 mRNA synthesis in the presence of high GTP increases the baseline level of Imd2 protein 10-fold and abolishes guanine-sensitive but not guanine-insensitive induction. Our results suggest that at least two mechanisms of yeast Imd2 regulation exist, the known GTP-dependent attenuation of RNA polymerase II elongation and a GTP concentration-independent pathway that may be controlled by cell growth state. Live-cell analysis of IMPDH protein levels in a growing yeast colony confirms a known mechanism of regulation and provides evidence for an additional mode of regulation. IMPORTANCE: This study used live-cell microscopy to track changes in the level of a key enzyme in GTP nucleotide biosynthesis, inosine monophosphate dehydrogenase (IMPDH), during growth of a brewers yeast colony over 2 days in a microfluidic device. The results show that feedback regulation via transcription attenuation allows cells to adapt to nutrient limitation in the crowded environs of a yeast colony. They also identify a novel mode of regulation of IMPDH level that is not driven by guanine nucleotide availability.


Assuntos
Regulação Fúngica da Expressão Gênica , Guanosina Trifosfato , IMP Desidrogenase , Saccharomyces cerevisiae , IMP Desidrogenase/metabolismo , IMP Desidrogenase/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Guanosina Trifosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ácido Micofenólico/farmacologia
14.
ACS Synth Biol ; 13(5): 1424-1433, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38684225

RESUMO

The ability to control cellular processes using optogenetics is inducer-limited, with most optogenetic systems responding to blue light. To address this limitation, we leverage an integrated framework combining Lustro, a powerful high-throughput optogenetics platform, and machine learning tools to enable multiplexed control over blue light-sensitive optogenetic systems. Specifically, we identify light induction conditions for sequential activation as well as preferential activation and switching between pairs of light-sensitive split transcription factors in the budding yeast, Saccharomyces cerevisiae. We use the high-throughput data generated from Lustro to build a Bayesian optimization framework that incorporates data-driven learning, uncertainty quantification, and experimental design to enable the prediction of system behavior and the identification of optimal conditions for multiplexed control. This work lays the foundation for designing more advanced synthetic biological circuits incorporating optogenetics, where multiple circuit components can be controlled using designer light induction programs, with broad implications for biotechnology and bioengineering.


Assuntos
Teorema de Bayes , Optogenética , Saccharomyces cerevisiae , Optogenética/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biologia Sintética/métodos , Luz , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Aprendizado de Máquina , Ensaios de Triagem em Larga Escala/métodos
15.
J Vis Exp ; (198)2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37590537

RESUMO

Optogenetics offers precise control over cellular behavior by utilizing genetically encoded light-sensitive proteins. However, optimizing these systems to achieve the desired functionality often requires multiple design-build-test cycles, which can be time-consuming and labor-intensive. To address this challenge, we have developed Lustro, a platform that combines light stimulation with laboratory automation, enabling efficient high-throughput screening and characterization of optogenetic systems. Lustro utilizes an automation workstation equipped with an illumination device, a shaking device, and a plate reader. By employing a robotic arm, Lustro automates the movement of a microwell plate between these devices, allowing for the stimulation of optogenetic strains and the measurement of their response. This protocol provides a step-by-step guide on using Lustro to characterize optogenetic systems for gene expression control in the budding yeast Saccharomyces cerevisiae. The protocol covers the setup of Lustro's components, including the integration of the illumination device with the automation workstation. It also provides detailed instructions for programming the illumination device, plate reader, and robot, ensuring smooth operation and data acquisition throughout the experimental process.


Assuntos
Saccharomyces cerevisiae , Saccharomycetales , Saccharomyces cerevisiae/genética , Optogenética , Automação , Ensaios de Triagem em Larga Escala
16.
bioRxiv ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37745509

RESUMO

The ability to modify and control natural and engineered microbiomes is essential for biotechnology and biomedicine. Fungi are critical members of most microbiomes, yet technology for modifying the fungal members of a microbiome has lagged far behind that for bacteria. Interdomain conjugation (IDC) is a promising approach, as DNA transfer from bacterial cells to yeast enables in situ modification. While such genetic transfers have been known to naturally occur in a wide range of eukaryotes, and are thought to contribute to their evolution, IDC has been understudied as a technique to control fungal or fungal-bacterial consortia. One major obstacle to widespread use of IDC is its limited efficiency. In this work, we utilize interactions between genetically tractable Escherichia coli and Saccharomyces cerevisiae to control the incidence of IDC. We test the landscape of population interactions between the bacterial donors and yeast recipients to find that bacterial commensalism leads to maximized IDC, both in culture and in mixed colonies. We demonstrate the capacity of cell-to-cell binding via mannoproteins to assist both IDC incidence and bacterial commensalism in culture, and model how these tunable controls can predictably yield a range of IDC outcomes. Further, we demonstrate that these lessons can be utilized to lastingly alter a recipient yeast population, by both "rescuing" a poor-growing recipient population and collapsing a stable population via a novel IDC-mediated CRISPR/Cas9 system.

17.
bioRxiv ; 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37066312

RESUMO

Optogenetic systems use genetically-encoded light-sensitive proteins to control cellular processes. This provides the potential to orthogonally control cells with light, however these systems require many design-build-test cycles to achieve a functional design and multiple illumination variables need to be laboriously tuned for optimal stimulation. We combine laboratory automation and a modular cloning scheme to enable high-throughput construction and characterization of optogenetic split transcription factors in Saccharomyces cerevisiae . We expand the yeast optogenetic toolkit to include variants of the cryptochromes and Enhanced Magnets, incorporate these light-sensitive dimerizers into split transcription factors, and automate illumination and measurement of cultures in a 96-well microplate format for high-throughput characterization. We use this approach to rationally design and test an optimized Enhanced Magnet transcription factor with improved light-sensitive gene expression. This approach is generalizable to high-throughput characterization of optogenetic systems across a range of biological systems and applications.

18.
Cell Rep ; 42(5): 112426, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37087734

RESUMO

Environmental information may be encoded in the temporal dynamics of transcription factor (TF) activation and subsequently decoded by gene promoters to enact stimulus-specific gene expression programs. Previous studies of this behavior focused on the encoding and decoding of information in TF nuclear localization dynamics, yet cells control the activity of TFs in myriad ways, including by regulating their ability to bind DNA. Here, we use light-controlled mutants of the yeast TF Msn2 as a model system to investigate how promoter decoding of TF localization dynamics is affected by changes in the ability of the TF to bind DNA. We find that yeast promoters directly decode the light-controlled localization dynamics of Msn2 and that the effects of changing Msn2 affinity on that decoding behavior are highly promoter dependent, illustrating how cells could regulate TF localization dynamics and DNA binding in concert for improved control of gene expression.


Assuntos
Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Regulação da Expressão Gênica , Regiões Promotoras Genéticas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
19.
ACS Synth Biol ; 12(7): 1943-1951, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37434272

RESUMO

Optogenetic systems use genetically encoded light-sensitive proteins to control cellular processes. This provides the potential to orthogonally control cells with light; however, these systems require many design-build-test cycles to achieve a functional design and multiple illumination variables need to be laboriously tuned for optimal stimulation. We combine laboratory automation and a modular cloning scheme to enable high-throughput construction and characterization of optogenetic split transcription factors in Saccharomyces cerevisiae. We expand the yeast optogenetic toolkit to include variants of the cryptochromes and enhanced Magnets, incorporate these light-sensitive dimerizers into split transcription factors, and automate illumination and measurement of cultures in a 96-well microplate format for high-throughput characterization. We use this approach to rationally design and test an optimized enhanced Magnet transcription factor with improved light-sensitive gene expression. This approach is generalizable to the high-throughput characterization of optogenetic systems across a range of biological systems and applications.


Assuntos
Luz , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Optogenética , Fatores de Transcrição/genética , Automação
20.
FEBS J ; 290(8): 2097-2114, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36416575

RESUMO

The yeast mitogen-activated protein kinase pathways serve as a model system for understanding how network interactions affect the way in which cells coordinate the response to multiple signals. We have quantitatively compared two yeast strain backgrounds YPH499 and ∑1278b (both of which have previously been used to study these pathways) and found several important differences in how they coordinate the interaction between the high osmolarity glycerol (HOG) and mating pathways. In the ∑1278b background, in response to simultaneous stimulus, mating pathway activation is dampened and delayed in a dose-dependent manner. In the YPH499 background, only dampening is dose-dependent. Furthermore, leakage from the HOG pathway into the mating pathway (crosstalk) occurs during osmostress alone in the ∑1278b background only. The mitogen-activated protein kinase Hog1p suppresses crosstalk late in an induction time course in both strains but does not affect the early crosstalk seen in the ∑1278b background. Finally, the kinase Rck2p plays a greater role suppressing late crosstalk in the ∑1278b background than in the YPH499 background. Our results demonstrate that comparisons between laboratory yeast strains provide an important resource for understanding how signalling network interactions are tuned by genetic variation without significant alteration to network structure.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Concentração Osmolar , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Glicerol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA