Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Nat Rev Mol Cell Biol ; 17(1): 55-64, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26580716

RESUMO

ß-catenin is widely regarded as the primary transducer of canonical WNT signals to the nucleus. In most vertebrates, there are eight additional catenins that are structurally related to ß-catenin, and three α-catenin genes encoding actin-binding proteins that are structurally related to vinculin. Although these catenins were initially identified in association with cadherins at cell-cell junctions, more recent evidence suggests that the majority of catenins also localize to the nucleus and regulate gene expression. Moreover, the number of catenins reported to be responsive to canonical WNT signals is increasing. Here, we posit that multiple catenins form a functional network in the nucleus, possibly engaging in conserved protein-protein interactions that are currently better characterized in the context of actin-based cell junctions.


Assuntos
Núcleo Celular/metabolismo , beta Catenina/metabolismo , Animais , Proteínas do Domínio Armadillo/química , Proteínas do Domínio Armadillo/metabolismo , Humanos , Modelos Biológicos , Transdução de Sinais , Proteínas Wnt/metabolismo , beta Catenina/química
2.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125895

RESUMO

The branched architecture of neuronal dendrites is a key factor in how neurons form ordered networks and discoveries continue to be made identifying proteins and protein-protein interactions that direct or execute the branching and extension of dendrites. Our prior work showed that the molecular scaffold Pdlim5 and delta-catenin, in conjunction, are two proteins that help regulate the branching and elongation of dendrites in cultured hippocampal neurons and do so through a phosphorylation-dependent mechanism triggered by upstream glutamate signaling. In this report we have focused on Pdlim5's multiple scaffolding domains and how each contributes to dendrite branching. The three identified regions within Pdlim5 are the PDZ, DUF, and a trio of LIM domains; however, unresolved is the intra-molecular conformation of Pdlim5 as well as which domains are essential to regulate dendritic branching. We address Pdlim5's structure and function by examining the role of each of the domains individually and using deletion mutants in the context of the full-length protein. Results using primary hippocampal neurons reveal that the Pdlim5 DUF domain plays a dominant role in increasing dendritic branching. Neither the PDZ domain nor the LIM domains alone support increased branching. The central role of the DUF domain was confirmed using deletion mutants in the context of full-length Pdlim5. Guided by molecular modeling, additional domain mapping studies showed that the C-terminal LIM domain forms a stable interaction with the N-terminal PDZ domain, and we identified key amino acid residues at the interface of each domain that are needed for this interaction. We posit that the central DUF domain of Pdlim5 may be subject to modulation in the context of the full-length protein by the intra-molecular interaction between the N-terminal PDZ and C-terminal LIM domains. Overall, our studies reveal a novel mechanism for the regulation of Pdlim5's function in the regulation of neuronal branching and highlight the critical role of the DUF domain in mediating these effects.


Assuntos
Dendritos , Hipocampo , Proteínas com Domínio LIM , Domínios PDZ , Dendritos/metabolismo , Animais , Hipocampo/metabolismo , Hipocampo/citologia , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/química , Proteínas com Domínio LIM/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Domínios Proteicos , Neurônios/metabolismo , Ratos , Células Cultivadas , Humanos
3.
Biochem Biophys Res Commun ; 563: 31-39, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34058472

RESUMO

Vertebrate beta-catenin plays a key role as a transducer of canonical-Wnt signals. We earlier reported that, similar to beta-catenin, the cytoplasmic signaling pool of p120-catenin-isoform1 is stabilized in response to canonical-Wnt signals. To obtain a yet broader view of the Wnt-pathway's impact upon catenin proteins, we focused upon plakophilin3 (plakophilin-3; Pkp3) as a representative of the plakophilin-catenin subfamily. Promoting tissue integrity, the plakophilins assist in linking desmosomal cadherins to intermediate filaments at desmosome junctions, and in common with other catenins they perform additional functions including in the nucleus. In this report, we test whether canonical-Wnt pathway components modulate Pkp3 protein levels. We find that in common with beta-catenin and p120-catenin-isoform1, Pkp3 is stabilized in the presence of a Wnt-ligand or a dominant-active form of the LRP6 receptor. Pkp3's levels are conversely lowered upon expressing destruction-complex components such as GSK3ß and Axin, and in further likeness to beta-catenin and p120-isoform1, Pkp3 associates with GSK3beta and Axin. Finally, we note that Pkp3-catenin trans-localizes into the nucleus in response to Wnt-ligand and its exogenous expression stimulates an accepted Wnt reporter. These findings fit an expanded model where context-dependent Wnt-signals or pathway components modulate Pkp3-catenin levels. Future studies will be needed to assess potential gene regulatory, cell adhesive, or cytoskeletal effects.


Assuntos
Placofilinas/metabolismo , Animais , Células Cultivadas , Humanos , Via de Sinalização Wnt , Xenopus laevis
4.
Mol Cell ; 52(2): 193-205, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24055345

RESUMO

Fine control of Wnt signaling is essential for various cellular and developmental decision-making processes. However, deregulation of Wnt signaling leads to pathological consequences, one of which is cancer. Here, we identify a function of PAF, a component of translesion DNA synthesis, in modulating Wnt signaling. PAF is specifically overexpressed in colon cancer cells and intestinal stem cells and is required for colon cancer cell proliferation. In Xenopus laevis, ventrovegetal expression of PAF hyperactivates Wnt signaling, developing a secondary axis with ß-catenin target gene upregulation. Upon Wnt signaling activation, PAF dissociates from PCNA and binds directly to ß-catenin. Then, PAF recruits EZH2 to the ß-catenin transcriptional complex and specifically enhances Wnt target gene transactivation, independently of EZH2's methyltransferase activity. In mice, conditional expression of PAF induces intestinal neoplasia via Wnt signaling hyperactivation. Our studies reveal an unexpected role of PAF in regulating Wnt signaling and propose a regulatory mechanism of Wnt signaling during tumorigenesis.


Assuntos
Proteínas de Transporte/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Proteínas de Ligação a DNA , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste , Regulação da Expressão Gênica no Desenvolvimento , Células HCT116 , Células HEK293 , Células HT29 , Humanos , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Complexo Repressor Polycomb 2/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Xenopus laevis , beta Catenina/genética
5.
Biochim Biophys Acta ; 1863(1): 102-14, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26477567

RESUMO

P120-catenin is essential to vertebrate development, modulating cadherin and small-GTPase functions, and growing evidence points also to roles in the nucleus. A complexity in addressing p120-catenin's functions is its many isoforms, including optional splicing events, alternative points of translational initiation, and secondary modifications. In this review, we focus upon how choices in the initiation of protein translation, or the earlier splicing of the RNA transcript, relates to primary sequences that harbor established or putative regulatory phosphorylation sites. While certain p120 phosphorylation events arise via known kinases/phosphatases and have defined outcomes, in most cases the functional consequences are still to be established. In this review, we provide examples of p120-isoforms as they relate to phosphorylation events, and thereby to isoform dependent protein-protein associations and downstream functions. We also provide a view of upstream pathways that determine p120's phosphorylation state, and that have an impact upon development and disease. Because other members of the p120 subfamily undergo similar processing and phosphorylation, as well as related catenins of the plakophilin subfamily, what is learned regarding p120 will by extension have wide relevance in vertebrates.


Assuntos
Cateninas/metabolismo , Núcleo Celular/metabolismo , Transformação Celular Neoplásica/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Animais , Cateninas/genética , Núcleo Celular/genética , Transformação Celular Neoplásica/genética , Humanos , Proteínas de Neoplasias/genética , Neoplasias/genética , Fosforilação/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , delta Catenina
6.
J Cell Sci ; 127(Pt 18): 4037-51, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25074806

RESUMO

Although the canonical Wnt pathway and ß-catenin have been extensively studied, less is known about the role of p120-catenin (also known as δ1-catenin) in the nuclear compartment. Here, we report that p120-catenin binds and negatively regulates REST and CoREST (also known as Rcor1), a repressive transcriptional complex that has diverse developmental and pathological roles. Using mouse embryonic stem cells (mESCs), mammalian cell lines, Xenopus embryos and in vitro systems, we find that p120-catenin directly binds the REST-CoREST complex, displacing it from established gene targets to permit their transcriptional activation. Importantly, p120-catenin levels further modulate the mRNA and protein levels of Oct4 (also known as POU5F1), Nanog and Sox2, and have an impact upon the differentiation of mESCs towards neural fates. In assessing potential upstream inputs to this new p120-catenin-REST-CoREST pathway, REST gene targets were found to respond to the level of E-cadherin, with evidence suggesting that p120-catenin transduces signals between E-cadherin and the nucleus. In summary, we provide the first evidence for a direct upstream modulator and/or pathway regulating REST-CoREST, and reveal a substantial role for p120-catenin in the modulation of stem cell differentiation.


Assuntos
Cateninas/metabolismo , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Repressoras/metabolismo , Animais , Cateninas/genética , Proteínas Correpressoras , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas Repressoras/genética , Xenopus laevis , delta Catenina
7.
Proc Natl Acad Sci U S A ; 110(45): 18042-51, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24058167

RESUMO

Mammalian organs, including the lung and kidney, often adopt a branched structure to achieve high efficiency and capacity of their physiological functions. Formation of a functional lung requires two developmental processes: branching morphogenesis, which builds a tree-like tubular network, and alveolar differentiation, which generates specialized epithelial cells for gas exchange. Much progress has been made to understand each of the two processes individually; however, it is not clear whether the two processes are coordinated and how they are deployed at the correct time and location. Here we show that an epithelial branching morphogenesis program antagonizes alveolar differentiation in the mouse lung. We find a negative correlation between branching morphogenesis and alveolar differentiation temporally, spatially, and evolutionarily. Gain-of-function experiments show that hyperactive small GTPase Kras expands the branching program and also suppresses molecular and cellular differentiation of alveolar cells. Loss-of-function experiments show that SRY-box containing gene 9 (Sox9) functions downstream of Fibroblast growth factor (Fgf)/Kras to promote branching and also suppresses premature initiation of alveolar differentiation. We thus propose that lung epithelial progenitors continuously balance between branching morphogenesis and alveolar differentiation, and such a balance is mediated by dual-function regulators, including Kras and Sox9. The resulting temporal delay of differentiation by the branching program may provide new insights to lung immaturity in preterm neonates and the increase in organ complexity during evolution.


Assuntos
Diferenciação Celular/fisiologia , Pulmão/embriologia , Morfogênese/fisiologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Alvéolos Pulmonares/citologia , Mucosa Respiratória/citologia , Animais , Primers do DNA/genética , Citometria de Fluxo , Hibridização In Situ , Camundongos , Camundongos Transgênicos , Análise em Microsséries , Fatores de Transcrição SOX9/metabolismo , Xenopus laevis
8.
Nature ; 460(7251): 66-72, 2009 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-19571879

RESUMO

Stem cells are controlled, in part, by genetic pathways frequently dysregulated during human tumorigenesis. Either stimulation of Wnt/beta-catenin signalling or overexpression of telomerase is sufficient to activate quiescent epidermal stem cells in vivo, although the mechanisms by which telomerase exerts these effects are not understood. Here we show that telomerase directly modulates Wnt/beta-catenin signalling by serving as a cofactor in a beta-catenin transcriptional complex. The telomerase protein component TERT (telomerase reverse transcriptase) interacts with BRG1 (also called SMARCA4), a SWI/SNF-related chromatin remodelling protein, and activates Wnt-dependent reporters in cultured cells and in vivo. TERT serves an essential role in formation of the anterior-posterior axis in Xenopus laevis embryos, and this defect in Wnt signalling manifests as homeotic transformations in the vertebrae of Tert(-/-) mice. Chromatin immunoprecipitation of the endogenous TERT protein from mouse gastrointestinal tract shows that TERT physically occupies gene promoters of Wnt-dependent genes. These data reveal an unanticipated role for telomerase as a transcriptional modulator of the Wnt/beta-catenin signalling pathway.


Assuntos
Cromatina/genética , Transdução de Sinais , Telomerase/metabolismo , Proteínas Wnt/metabolismo , Animais , Linhagem Celular , Coristoma/genética , Coristoma/patologia , DNA Helicases/metabolismo , Genes Reporter/genética , Células HeLa , Humanos , Intestino Delgado/metabolismo , Camundongos , Proteínas Nucleares/metabolismo , Oócitos/citologia , Oócitos/crescimento & desenvolvimento , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Somitos/anormalidades , Somitos/embriologia , Fatores de Transcrição/metabolismo , Proteínas Wnt/genética , Proteína Wnt3 , Xenopus laevis/embriologia , beta Catenina/genética
9.
J Cell Sci ; 125(Pt 22): 5288-301, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22946057

RESUMO

A role for Rac1 GTPase in canonical Wnt signaling has recently been demonstrated, showing that it is required for ß-catenin translocation to the nucleus. In this study, we investigated the mechanism of Rac1 stimulation by Wnt. Upregulation of Rac1 activity by Wnt3a temporally correlated with enhanced p120-catenin binding to Rac1 and Vav2. Vav2 and Rac1 association with p120-catenin was modulated by phosphorylation of this protein, which was stimulated upon serine/threonine phosphorylation by CK1 and inhibited by tyrosine phosphorylation by Src or Fyn. Acting on these two post-translational modifications, Wnt3a induced the release of p120-catenin from E-cadherin, enabled the interaction of p120-catenin with Vav2 and Rac1, and facilitated Rac1 activation by Vav2. Given that p120-catenin depletion disrupts gastrulation in Xenopus, we analyzed p120-catenin mutants for their ability to rescue this phenotype. In contrast to the wild-type protein or other controls, p120-catenin point mutants that were deficient in the release from E-cadherin or in Vav2 or Rac1 binding failed to rescue p120-catenin depletion. Collectively, these results indicate that binding of p120-catenin to Vav2 and Rac1 is required for the activation of this GTPase upon Wnt signaling.


Assuntos
Cateninas/metabolismo , Proteínas Proto-Oncogênicas c-vav/metabolismo , Proteína Wnt3A/farmacologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Caderinas/metabolismo , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Ativação Enzimática/efeitos dos fármacos , Gastrulação/efeitos dos fármacos , Humanos , Modelos Biológicos , Proteínas Mutantes/metabolismo , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Fosfotirosina/metabolismo , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Xenopus/embriologia , Xenopus/metabolismo , beta Catenina/metabolismo , delta Catenina
10.
J Cell Sci ; 125(Pt 3): 561-9, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22389395

RESUMO

The Wnt pathways contribute to many processes in cancer and development, with ß-catenin being a key canonical component. p120-catenin, which is structurally similar to ß-catenin, regulates the expression of certain Wnt target genes, relieving repression conferred by the POZ- and zinc-finger-domain-containing transcription factor Kaiso. We have identified the kinase Dyrk1A as a component of the p120-catenin-Kaiso trajectory of the Wnt pathway. Using rescue and other approaches in Xenopus laevis embryos and mammalian cells, we found that Dyrk1A positively and selectively modulates p120-catenin protein levels, thus having an impact on p120-catenin and Kaiso (and canonical Wnt) gene targets such as siamois and wnt11. The Dyrk1A gene resides within the Down's syndrome critical region, which is amplified in Down's syndrome. A consensus Dyrk phosphorylation site in p120-catenin was identified, with a mutant mimicking phosphorylation exhibiting the predicted enhanced capacity to promote endogenous Wnt-11 and Siamois expression, and gastrulation defects. In summary, we report the biochemical and functional relationship of Dyrk1A with the p120-catenin-Kaiso signaling trajectory, with a linkage to canonical Wnt target genes. Conceivably, this work might also prove relevant to understanding the contribution of Dyrk1A dosage imbalance in Down's syndrome.


Assuntos
Cateninas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Via de Sinalização Wnt/fisiologia , Proteínas de Xenopus/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Cateninas/genética , Primers do DNA/genética , Síndrome de Down/genética , Síndrome de Down/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Dados de Sequência Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , RNA Interferente Pequeno/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Transfecção , Proteínas de Xenopus/genética , Xenopus laevis/embriologia , Xenopus laevis/genética , Xenopus laevis/metabolismo , delta Catenina
11.
Nat Rev Cancer ; 5(12): 956-64, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16294216

RESUMO

Kaiso belongs to the zinc finger and broad-complex, tramtrack and bric-a-brac/poxvirus and zinc finger (BTB/POZ) protein family that has been implicated in tumorigenesis. Kaiso was first discovered in a complex with the armadillo-domain protein p120ctn and later shown to function as a transcriptional repressor. As p120ctn seems to relieve Kaiso-mediated repression, its altered intracellular localization in some cancer cells might result in aberrant Kaiso nuclear activity. Intriguingly, Kaiso's target genes include both methylated and sequence-specific recognition sites. The latter include genes that are modulated by the canonical Wnt (beta-catenin-T-cell factor) signalling pathway. Further interest in Kaiso stems from findings that its cytoplasmic versus nuclear localization is modulated by complex cues from the microenvironment.


Assuntos
Neoplasias/genética , Fatores de Transcrição/genética , Animais , Proteínas do Domínio Armadillo/genética , Cateninas , Moléculas de Adesão Celular , Proteínas do Citoesqueleto/genética , Humanos , Fosfoproteínas , Proteínas Repressoras/genética , Xenopus , Proteínas de Xenopus/genética , beta Catenina/genética , delta Catenina
12.
Front Cell Neurosci ; 18: 1315941, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414752

RESUMO

Neuronal connectivity is regulated during normal brain development with the arrangement of spines and synapses being dependent on the morphology of dendrites. Further, in multiple neurodevelopmental and aging disorders, disruptions of dendrite formation or shaping is associated with atypical neuronal connectivity. We showed previously that Pdlim5 binds delta-catenin and promotes dendrite branching. We report here that Pdlim5 interacts with PalmD, a protein previously suggested by others to interact with the cytoskeleton (e.g., via adducin/spectrin) and to regulate membrane shaping. Functionally, the knockdown of PalmD or Pdlim5 in rat primary hippocampal neurons dramatically reduces branching and conversely, PalmD exogenous expression promotes dendrite branching as does Pdlim5. Further, we show that each proteins' effects are dependent on the presence of the other. In summary, using primary rat hippocampal neurons we reveal the contributions of a novel Pdlim5:PalmD protein complex, composed of functionally inter-dependent components responsible for shaping neuronal dendrites.

14.
bioRxiv ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37662414

RESUMO

Neuronal connectivity is regulated during normal brain development with the arrangement of spines and synapses being dependent on the morphology of dendrites. Further, in multiple neurodevelopmental and aging disorders, disruptions of dendrite formation or shaping is associated with atypical neuronal connectivity. We showed previously that Pdlim5 binds delta-catenin and promotes dendrite branching (Baumert et al., J Cell Biol 2020). We report here that Pdlim5 interacts with PalmD, a protein previously suggested by others to interact with the cytoskeleton (e.g., via adducin/ spectrin) and to regulate membrane shaping. Functionally, the knockdown of PalmD or Pdlim5 in rat primary hippocampal neurons dramatically reduces branching and conversely, PalmD exogenous expression promotes dendrite branching as does Pdlim5. Further, we show that effects of each protein are dependent on the presence of the other. In summary, using primary rat hippocampal neurons we reveal the contributions of a novel Pdlim5:PalmD protein complex, composed of functionally inter-dependent components responsible for shaping neuronal dendrites.

15.
bioRxiv ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37961492

RESUMO

Aging is an inevitable process with senescence being one of its hallmarks. Recent advances have indicated that the elimination of senescent cells can reduce the signs of aging and increase healthy life span. Here, we identify a negative modulator of aging, Sprr1a, and in turn a negative modulator of Sprr1a, miR-130b. We show that reductions in Sprr1a levels, including via miR-130b expression, promotes cell senescence-like phenotype. We find that mediators of senescence, such as inflammatory cytokines and cell cycle regulators, are modulated by the miR-130b and Sprr1a-related pathway. For example, the levels of p16, p53 and p21 become decreased or increased upon the respective expression of Sprr1a versus miR-130b. Further, as shown in relation to p16 levels and ß-galactosidase levels, cells expressing Sprr1a exhibit significant protection from senescence-inducing factors such as radiation or Doxorubicin, suggesting that Sprr1a might contribute to protection against age-related pathologies. Taken together, we introduce two modulators of properties associated with senescence-like phenotype.

16.
Front Cell Neurosci ; 17: 1151249, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082208

RESUMO

Dendritic arborization is essential for proper neuronal connectivity and function. Conversely, abnormal dendrite morphology is associated with several neurological pathologies like Alzheimer's disease and schizophrenia. Among major intrinsic mechanisms that determine the extent of the dendritic arbor is cytoskeletal remodeling. Here, we characterize and compare the impact of the four proteins involved in cytoskeletal remodeling-vertebrate members of the p120-catenin subfamily-on neuronal dendrite morphology. In relation to each of their own distributions, we find that p120-catenin and delta-catenin are expressed at relatively higher proportions in growth cones compared to ARVCF-catenin and p0071-catenin; ARVCF-catenin is expressed at relatively high proportions in the nucleus; and all catenins are expressed in dendritic processes and the soma. Through altering the expression of each p120-subfamily catenin in neurons, we find that exogenous expression of either p120-catenin or delta-catenin correlates with increased dendritic length and branching, whereas their respective depletion decreases dendritic length and branching. While increasing ARVCF-catenin expression also increases dendritic length and branching, decreasing expression has no grossly observable morphological effect. Finally, increasing p0071-catenin expression increases dendritic branching, but not length, while decreasing expression decreases dendritic length and branching. These distinct localization patterns and morphological effects during neuron development suggest that these catenins have both shared and distinct roles in the context of dendrite morphogenesis.

17.
J Biol Chem ; 286(26): 23178-88, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21561870

RESUMO

δ-Catenin is an Armadillo protein of the p120-catenin subfamily capable of modulating cadherin stability, small GTPase activity, and nuclear transcription. From yeast two-hybrid screening of a human embryonic stem cell cDNA library, we identified δ-catenin as a potential interacting partner of the caspase-3 protease, which plays essential roles in apoptotic as well as non-apoptotic processes. Interaction of δ-catenin with caspase-3 was confirmed using cleavage assays conducted in vitro, in Xenopus apoptotic extracts, and in cell line chemically induced contexts. The cleavage site, a highly conserved caspase consensus motif (DELD) within Armadillo repeat 6 of δ-catenin, was identified through peptide sequencing. Cleavage thus generates an amino-terminal (residues 1-816) and carboxyl-terminal (residues 817-1314) fragment, each containing about half of the central Armadillo domain. We found that cleavage of δ-catenin both abolishes its association with cadherins and impairs its ability to modulate small GTPases. Interestingly, 817-1314 possesses a conserved putative nuclear localization signal that may facilitate the nuclear targeting of δ-catenin in defined contexts. To probe for novel nuclear roles of δ-catenin, we performed yeast two-hybrid screening of a mouse brain cDNA library, resolving and then validating interaction with an uncharacterized KRAB family zinc finger protein, ZIFCAT. Our results indicate that ZIFCAT is nuclear and suggest that it may associate with DNA as a transcriptional repressor. We further determined that other p120 subfamily catenins are similarly cleaved by caspase-3 and likewise bind ZIFCAT. Our findings potentially reveal a simple yet novel signaling pathway based upon caspase-3 cleavage of p120-catenin subfamily members, facilitating the coordinate modulation of cadherins, small GTPases, and nuclear functions.


Assuntos
Apoptose/fisiologia , Caspase 3/metabolismo , Cateninas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais/fisiologia , Motivos de Aminoácidos , Animais , Caderinas/genética , Caderinas/metabolismo , Caspase 3/genética , Cateninas/genética , Proteínas de Ligação a DNA/genética , Células HEK293 , Células HeLa , Humanos , Camundongos , Proteínas Nucleares/genética , Estrutura Terciária de Proteína , Proteínas Repressoras/genética , Saccharomyces cerevisiae , Técnicas do Sistema de Duplo-Híbrido , Xenopus laevis , delta Catenina
18.
J Cell Sci ; 123(Pt 24): 4351-65, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21098636

RESUMO

Wnt signaling pathways have fundamental roles in animal development and tumor progression. Here, employing Xenopus embryos and mammalian cell lines, we report that the degradation machinery of the canonical Wnt pathway modulates p120-catenin protein stability through mechanisms shared with those regulating ß-catenin. For example, in common with ß-catenin, exogenous expression of destruction complex components, such as GSK3ß and axin, promotes degradation of p120-catenin. Again in parallel with ß-catenin, reduction of canonical Wnt signals upon depletion of LRP5 and LRP6 results in p120-catenin degradation. At the primary sequence level, we resolved conserved GSK3ß phosphorylation sites in the amino-terminal region of p120-catenin present exclusively in isoform-1. Point-mutagenesis of these residues inhibited the association of destruction complex components, such as those involved in ubiquitylation, resulting in stabilization of p120-catenin. Functionally, in line with predictions, p120 stabilization increased its signaling activity in the context of the p120-Kaiso pathway. Importantly, we found that two additional p120-catenin family members, ARVCF-catenin and δ-catenin, associate with axin and are degraded in its presence. Thus, as supported using gain- and loss-of-function approaches in embryo and cell line systems, canonical Wnt signals appear poised to have an impact upon a breadth of catenin biology in vertebrate development and, possibly, human cancers.


Assuntos
Cateninas/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Proteína Axina , Caseína Quinase I/metabolismo , Cateninas/química , Linhagem Celular , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Repressoras/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Xenopus , Proteínas de Xenopus , delta Catenina
19.
J Cell Sci ; 123(Pt 23): 4128-44, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21062899

RESUMO

In common with other p120-catenin subfamily members, Xenopus ARVCF (xARVCF) binds cadherin cytoplasmic domains to enhance cadherin metabolic stability or, when dissociated, modulates Rho-family GTPases. We report here that xARVCF binds and is stabilized by Xenopus KazrinA (xKazrinA), a widely expressed conserved protein that bears little homology to established protein families, and which is known to influence keratinocyte proliferation and differentiation and cytoskeletal activity. Although we found that xKazrinA binds directly to xARVCF, we did not resolve xKazrinA within a larger ternary complex with cadherin, nor did it co-precipitate with core desmosomal components. Instead, screening revealed that xKazrinA binds spectrin, suggesting a potential means by which xKazrinA localizes to cell-cell borders. This was supported by the resolution of a ternary biochemical complex of xARVCF-xKazrinA-xß2-spectrin and, in vivo, by the finding that ectodermal shedding followed depletion of xKazrin in Xenopus embryos, a phenotype partially rescued with exogenous xARVCF. Cell shedding appeared to be the consequence of RhoA activation, and thereby altered actin organization and cadherin function. Indeed, we also revealed that xKazrinA binds p190B RhoGAP, which was likewise capable of rescuing Kazrin depletion. Finally, xKazrinA was found to associate with δ-catenins and p0071-catenins but not with p120-catenin, suggesting that Kazrin interacts selectively with additional members of the p120-catenin subfamily. Taken together, our study supports the essential role of Kazrin in development, and reveals the biochemical and functional association of KazrinA with ARVCF-catenin, spectrin and p190B RhoGAP.


Assuntos
Proteínas do Domínio Armadillo/metabolismo , Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Células Epiteliais/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Espectrina/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Proteínas do Domínio Armadillo/química , Proteínas do Domínio Armadillo/genética , Caderinas/genética , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/genética , Linhagem Celular , Células Epiteliais/química , Células Epiteliais/enzimologia , Proteínas Ativadoras de GTPase/genética , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Fosfoproteínas/química , Fosfoproteínas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Espectrina/genética , Técnicas do Sistema de Duplo-Híbrido , Xenopus/genética , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Proteína rhoA de Ligação ao GTP/genética
20.
J Am Soc Nephrol ; 22(9): 1654-64, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21804089

RESUMO

Canonical ß-catenin-mediated Wnt signaling is essential for the induction of nephron development. Noncanonical Wnt/planar cell polarity (PCP) pathways contribute to processes such as cell polarization and cytoskeletal modulation in several tissues. Although PCP components likely establish the plane of polarization in kidney tubulogenesis, whether PCP effectors directly modulate the actin cytoskeleton in tubulogenesis is unknown. Here, we investigated the roles of Wnt PCP components in cytoskeletal assembly during kidney tubule morphogenesis in Xenopus laevis and zebrafish. We found that during tubulogenesis, the developing pronephric anlagen expresses Daam1 and its interacting Rho-GEF (WGEF), which compose one PCP/noncanonical Wnt pathway branch. Knockdown of Daam1 resulted in reduced expression of late pronephric epithelial markers with no apparent effect upon early markers of patterning and determination. Inhibiting various points in the Daam1 signaling pathway significantly reduced pronephric tubulogenesis. These data indicate that pronephric tubulogenesis requires the Daam1/WGEF/Rho PCP pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Polaridade Celular , Citoesqueleto/metabolismo , Túbulos Renais/embriologia , Organogênese , Proteínas Wnt/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Apoptose , Proliferação de Células , Feminino , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Xenopus laevis , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA