Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neuroinflammation ; 21(1): 14, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195485

RESUMO

Traumatic brain injury (TBI) is a key contributor to global morbidity that lacks effective treatments. Microbial infections are common in TBI patients, and their presence could modify the physiological response to TBI. It is estimated that one-third of the human population is incurably infected with the feline-borne parasite, Toxoplasma gondii, which can invade the central nervous system and result in chronic low-grade neuroinflammation, oxidative stress, and excitotoxicity-all of which are also important pathophysiological processes in TBI. Considering the large number of TBI patients that have a pre-existing T. gondii infection prior to injury, and the potential mechanistic synergies between the conditions, this study investigated how a pre-existing T. gondii infection modified TBI outcomes across acute, sub-acute and chronic recovery in male and female mice. Gene expression analysis of brain tissue found that neuroinflammation and immune cell markers were amplified in the combined T. gondii + TBI setting in both males and females as early as 2-h post-injury. Glutamatergic, neurotoxic, and oxidative stress markers were altered in a sex-specific manner in T. gondii + TBI mice. Structural MRI found that male, but not female, T. gondii + TBI mice had a significantly larger lesion size compared to their uninfected counterparts at 18-weeks post-injury. Similarly, diffusion MRI revealed that T. gondii + TBI mice had exacerbated white matter tract abnormalities, particularly in male mice. These novel findings indicate that a pre-existing T. gondii infection affects the pathophysiological aftermath of TBI in a sex-dependent manner, and may be an important modifier to consider in the care and prognostication of TBI patients.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Toxoplasmose , Humanos , Animais , Gatos , Feminino , Masculino , Camundongos , Doenças Neuroinflamatórias , Lesões Encefálicas/complicações , Lesões Encefálicas Traumáticas/complicações , Toxoplasmose/complicações , Encéfalo
2.
Cereb Cortex ; 31(10): 4411-4419, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-33860291

RESUMO

Sports-related concussion (SRC) is a serious health concern. However, the temporal profile of neuropathophysiological changes after SRC and how these relate to biological sex are still poorly understood. This preliminary study investigated whether diffusion-weighted magnetic resonance imaging (dMRI) was sensitive to neuropathophysiological changes following SRC; whether these changes were sex-specific; and whether they persisted beyond the resolution of self-reported symptoms. Recently concussed athletes (n = 14), and age- and education-matched nonconcussed control athletes (n = 16), underwent MRI 24-48-h postinjury and again at 2-week postinjury (i.e., when cleared to return-to-play). Male athletes reported more symptoms and greater symptom severity compared with females. dMRI revealed white matter differences between athletes with SRC and their nonconcussed counterparts at 48-h postinjury. These differences were still present at 2-week postinjury, despite SRC athletes being cleared to return to play and may indicate increased cerebral vulnerability beyond the resolution of subjective symptoms. Furthermore, we identified sex-specific differences, with male SRC athletes having significantly greater white matter disruption compared with female SRC athletes. These results have important implications for the management of concussion, including guiding return-to-play decisions, and further improve our understanding regarding the role of sex in SRC outcomes.


Assuntos
Traumatismos em Atletas/diagnóstico por imagem , Concussão Encefálica/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adolescente , Adulto , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Autorrelato , Caracteres Sexuais , Futebol/lesões , Adulto Jovem
3.
Cereb Cortex ; 31(12): 5331-5338, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34148076

RESUMO

Sports-related concussion (SRC) is a form of mild traumatic brain injury that has been linked to long-term neurological abnormalities. Australian rules football is a collision sport with wide national participation and is growing in popularity worldwide. However, the chronic neurological consequences of SRC in Australian footballers remain poorly understood. This study investigated the presence of brain abnormalities in Australian footballers with a history of sports-related concussion (HoC) using multimodal MRI. Male Australian footballers with HoC (n = 26), as well as noncollision sport athletes with no HoC (n = 27), were recruited to the study. None of the footballers had sustained a concussion in the preceding 6 months, and all players were asymptomatic. Data were acquired using a 3T MRI scanner. White matter integrity was assessed using diffusion tensor imaging. Cortical thickness, subcortical volumes, and cavum septum pellucidum (CSP) were analyzed using structural MRI. Australian footballers had evidence of widespread microstructural white matter damage and cortical thinning. No significant differences were found regarding subcortical volumes or CSP. These novel findings provide evidence of persisting white and gray matter abnormalities in Australian footballers with HoC, and raise concerns related to the long-term neurological health of these athletes.


Assuntos
Traumatismos em Atletas , Concussão Encefálica , Substância Branca , Traumatismos em Atletas/diagnóstico por imagem , Austrália , Concussão Encefálica/diagnóstico por imagem , Imagem de Tensor de Difusão , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Substância Branca/diagnóstico por imagem
4.
Neurobiol Dis ; 148: 105151, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33127468

RESUMO

A history of mild traumatic brain injury (mTBI) is linked to a number of chronic neurological conditions, however there is still much unknown about the underlying mechanisms. To provide new insights, this study used a clinically relevant model of repeated mTBI in rats to characterize the acute and chronic neuropathological and neurobehavioral consequences of these injuries. Rats were given four sham-injuries or four mTBIs and allocated to 7-day or 3.5-months post-injury recovery groups. Behavioral analysis assessed sensorimotor function, locomotion, anxiety, and spatial memory. Neuropathological analysis included serum quantification of neurofilament light (NfL), mass spectrometry of the hippocampal proteome, and ex vivo magnetic resonance imaging (MRI). Repeated mTBI rats had evidence of acute cognitive deficits and prolonged sensorimotor impairments. Serum NfL was elevated at 7 days post injury, with levels correlating with sensorimotor deficits; however, no NfL differences were observed at 3.5 months. Several hippocampal proteins were altered by repeated mTBI, including those associated with energy metabolism, neuroinflammation, and impaired neurogenic capacity. Diffusion MRI analysis at 3.5 months found widespread reductions in white matter integrity. Taken together, these findings provide novel insights into the nature and progression of repeated mTBI neuropathology that may underlie lingering or chronic neurobehavioral deficits.


Assuntos
Comportamento Animal , Concussão Encefálica/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Animais , Ansiedade , Concussão Encefálica/metabolismo , Concussão Encefálica/patologia , Concussão Encefálica/fisiopatologia , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Locomoção , Imageamento por Ressonância Magnética , Proteínas de Neurofilamentos/sangue , Proteômica , Ratos , Recidiva , Memória Espacial , Substância Branca/diagnóstico por imagem
5.
J Musculoskelet Neuronal Interact ; 21(2): 263-271, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34059571

RESUMO

OBJECTIVES: To study the effects of the selective TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF), on fracture healing in mice and on an osteoprogenitor cell line, Kusa4b10, in vitro. METHODS: Mice received unilateral closed mid-shaft tibial fractures and treated for two weeks with vehicle or 5 mg/kg/day DHF and euthanised at 28 days post-fracture. Calluses were analysed by micro-computed tomography (µCT) and three-point bending biomechanical test. Kusa4b10 cells were cultured with 50nM of 7,8-DHF or vehicle for 3-, 7-, 14-days for RT-PCR, and 21 days for mineralization. RESULTS: µCT found 7,8-DHF calluses had decreased tissue volume (p=0.042), mean polar moment of inertia (p = 0.004), and mean cross-sectional area (p=0.042) compared to controls. At 28 days biomechanical analyses showed 7,8-DHF treatment decreased peak force (p=0.011) and stiffness per unit area (p=0.012). 7,8-DHF treatment did not change Kusa4b10 gene expression of Runx2 and alkaline phosphatase at all time points, nor mineralization. CONCLUSIONS: 7,8-DHF treatment had a negative impact on fracture healing at 28 days post-fracture via an unknown mechanism. 7,8-DHF may have had a central role in impairing fracture healing.


Assuntos
Consolidação da Fratura , Animais , Flavonas , Camundongos , Microtomografia por Raio-X
6.
J Neuroinflammation ; 17(1): 104, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32252777

RESUMO

There is a great clinical need to identify the underlying mechanisms, as well as related biomarkers, and treatment targets, for traumatic brain injury (TBI). Neuroinflammation is a central pathophysiological feature of TBI. NLRP3 inflammasome activity is a necessary component of the innate immune response to tissue damage, and dysregulated inflammasome activity has been implicated in a number of neurological conditions. This paper introduces the NLRP3 inflammasome and its implication in the pathogenesis of neuroinflammatory-related conditions, with a particular focus on TBI. Although its role in TBI has only recently been identified, findings suggest that priming and activation of the NLRP3 inflammasome are upregulated following TBI. Moreover, recent studies utilizing specific NLRP3 inhibitors have provided further evidence that this inflammasome is a major driver of neuroinflammation and neurobehavioral disturbances following TBI. In addition, there is emerging evidence that circulating inflammasome-associated proteins may have utility as diagnostic biomarkers of neuroinflammatory conditions, including TBI. Finally, novel and promising areas of research will be highlighted, including the potential involvement of the NLRP3 inflammasome in mild TBI, how factors such as biological sex may affect NLRP3 activity in TBI, and the use of emerging biomarker platforms. Taken together, this review highlights the exciting potential of the NLRP3 inflammasome as a target for treatments and biomarkers that may ultimately be used to improve TBI management.


Assuntos
Biomarcadores , Lesões Encefálicas Traumáticas/imunologia , Inflamassomos/imunologia , Inflamação/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Animais , Lesões Encefálicas Traumáticas/patologia , Humanos , Inflamação/patologia
7.
Brain Inj ; 34(1): 131-139, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31526028

RESUMO

PRIMARY OBJECTIVE: This study characterized the acute and chronic effects of tau reduction in traumatic brain injury (TBI). RESEARCH DESIGN: A fluid percussion injury (FPI) or a sham-injury was administered to wild type (WT) or tau knockout (Tau-/-) mice. Mice were assigned to a one-week or twelve-week recovery period before behavioral testing and analysis of brain tissue. METHODS AND PROCEDURES: Mice were tested on the elevated-plus maze, the Y-maze, and rotarod. The twelve-week recovery mice underwent in vivo MRI. Phosphorylated tau in brain tissue was analyzed post-mortem using western blots. MAIN OUTCOMES AND RESULTS: FPI mice, regardless of genotype, had abnormalities on the elevated-plus maze (a task to assess anxiety-like behavior) at one-week post-injury. However, after twelve-weeks recovery, the Tau-/- mice that were given an FPI were less anxious and had improved motor function compared to their WT counterparts. MRI analysis found that while all FPI mice had brain damage, the Tau-/- mice had larger hippocampal volumes. The WT+FPI mice also had increased phosphorylated tau compared to WT+sham mice at both the one-week and twelve-week recovery times. CONCLUSION: These findings suggest that tau may play an important role in some of the consequences of TBI, particularly the long-term functional deficits.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Animais , Encéfalo/diagnóstico por imagem , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/genética , Modelos Animais de Doenças , Camundongos , Percussão
8.
Brain Behav Immun ; 80: 536-550, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31039431

RESUMO

Initial studies suggest that increased age is associated with worse outcomes after traumatic brain injury (TBI), though the pathophysiological mechanisms responsible for this remain unclear. Immunosenescence (i.e., dysregulation of the immune system due to aging) may play a significant role in influencing TBI outcomes. This study therefore examined neurological outcomes and immune response in young-adult (i.e., 10 weeks old) compared to middle-aged (i.e., 1 year old) rats following a TBI (i.e., fluid percussion) or sham-injury. Rats were euthanized at either 24 h or one-week post-injury to analyze immune cell populations in the brain and periphery via flow cytometry, as well as telomere length (i.e., a biomarker of neurological health). Behavioral testing, as well as volumetric and diffusion-weighted MRI, were also performed in the one-week recovery rats to assess for functional deficits and brain damage. Middle-aged rats had worse sensorimotor deficits and shorter telomeres after TBI compared to young rats. Both aging and TBI independently worsened cognitive function and cortical volume. These changes occurred in the presence of fewer total leukocytes, fewer infiltrating myeloid cells, and fewer microglia in the brains of middle-aged TBI rats compared to young rats. These findings indicate that middle-aged rats have worse sensorimotor deficits and shorter telomeres after TBI than young rats, and this may be related to an altered neuroimmune response. Although further studies are required, these findings have important implications for understanding the pathophysiology and optimal treatment strategies in TBI patients across the life span.


Assuntos
Lesões Encefálicas Traumáticas/imunologia , Neuroimunomodulação/imunologia , Recuperação de Função Fisiológica/imunologia , Fatores Etários , Animais , Encéfalo/fisiopatologia , Lesões Encefálicas Traumáticas/metabolismo , Cognição/fisiologia , Transtornos Cognitivos/complicações , Modelos Animais de Doenças , Masculino , Microglia/imunologia , Microglia/metabolismo , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/fisiologia , Homeostase do Telômero/imunologia , Resultado do Tratamento
9.
J Musculoskelet Neuronal Interact ; 19(1): 94-103, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30839307

RESUMO

OBJECTIVES: To study effects of the selective TrkA agonist, gambogic amide (GA), on fracture healing in mice and on an osteoprogenitor cell line in vitro. METHODS: Mice were given bilateral fibular fractures and treated for two weeks with vehicle or 1 mg/kg/day GA and euthanized at 14-, 21-, and 42-days post-fracture. Calluses were analysed by micro-computed tomography (µCT), three-point bending and histology. For RT-PCR analyses, Kusa O cells were treated with 0.5nM of GA or vehicle for 3, 7, and 14 days, while for mineralization assessment, cells were treated for 21 days. RESULTS: µCT analysis found that 21-day GA-treated calluses had both decreased tissue volume (p<0.05) and bone surface (p<0.05) and increased fractional bone volume (p<0.05) compared to controls. Biomechanical analyses of 42-day calluses revealed that GA treatment increased stiffness per unit area by 53% (p<0.01) and load per unit area by 52% (p<0.01). GA treatment increased Kusa O gene expression of alkaline phosphatase and osteocalcin (p<0.05) by 14 days as well as mineralization at 21 days (p<0.05). CONCLUSIONS: GA treatment appeared to have a beneficial effect on fracture healing at 21- and 42-days post-fracture. The exact mechanism is not yet understood but may involve increased osteoblastic differentiation and matrix mineralization.


Assuntos
Calcificação Fisiológica/efeitos dos fármacos , Consolidação da Fratura/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Xantonas/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Consolidação da Fratura/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/citologia , Receptor trkA/agonistas
10.
Brain Behav Immun ; 69: 618-628, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29355823

RESUMO

Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, and typically involves a robust immune response. Although a great deal of preclinical research has been conducted to identify an effective treatment, all phase III clinical trials have been unsuccessful to date. These translational shortcomings are in part due to a failure to recognize and account for the heterogeneity of TBI, including how extracranial factors can influence the aftermath of TBI. For example, most preclinical studies have utilized isolated TBI models in young adult males, while clinical trials typically involve highly heterogeneous patient populations (e.g., different mechanisms of injury, a range of ages, presence of polytrauma or infection). This paper will review the current, albeit limited literature related to how TBI is affected by common concomitant immunological stressors. In particular, discussion will focus on whether extracranial trauma (i.e., polytrauma), infection, and age/immunosenescence can influence TBI pathophysiology, and thereby may result in a different brain injury than what would have occurred in an isolated TBI. It is concluded that these immunological stressors are all likely to be TBI modifiers that should be further studied and could impact translational treatment strategies.


Assuntos
Lesões Encefálicas Traumáticas/imunologia , Proteínas de Drosophila/imunologia , Cadeias alfa de Integrinas/imunologia , Animais , Humanos , Modelos Animais
11.
Cereb Cortex ; 27(9): 4503-4515, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27566977

RESUMO

Traumatic brain injury (TBI) has been suggested to increase the risk of amyotrophic lateral sclerosis (ALS). However, this link remains controversial and as such, here we performed experimental moderate TBI in rats and assessed for the presence of ALS-like pathological and functional abnormalities at both 1 and 12 weeks post-injury. Serial in-vivo magnetic resonance imaging (MRI) demonstrated that rats given a TBI had progressive atrophy of the motor cortices and degeneration of the corticospinal tracts compared with sham-injured rats. Immunofluorescence analyses revealed a progressive reduction in neurons, as well as increased phosphorylated transactive response DNA-binding protein 43 (TDP-43) and cytoplasmic TDP-43, in the motor cortex of rats given a TBI. Rats given a TBI also had fewer spinal cord motor neurons, increased expression of muscle atrophy markers, and altered muscle fiber contractile properties compared with sham-injured rats at 12 weeks, but not 1 week, post-injury. All of these changes occurred in the presence of persisting motor deficits. These findings resemble some of the pathological and functional abnormalities common in ALS and support the notion that TBI can result in a progressive neurodegenerative disease process pathologically bearing similarities to a motor neuron disease.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Córtex Motor/fisiopatologia , Doença dos Neurônios Motores/fisiopatologia , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Masculino , Doença dos Neurônios Motores/etiologia , Ratos Long-Evans , Medula Espinal/fisiopatologia
12.
Brain Inj ; 32(2): 257-268, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29227174

RESUMO

OBJECTIVES: There is evidence that treatment with nerve growth factor (NGF) may reduce neuroinflammation and apoptosis after a traumatic brain injury (TBI). NGF is thought to exert its effects via binding to either TrkA or p75 neurotrophin receptors. This study aimed to investigate the effects of a selective TrkA agonist, gambogic amide (GA), on TBI pathology and outcomes in mice following lateral fluid percussion injury. METHODS: Male C57BL/6 mice were given either a TBI or sham injury, and then received subcutaneous injections of either 2 mg/kg of GA or vehicle at 1, 24, and 48 h post-injury. Following behavioural studies, mice were euthanized at 72 h post-injury for analysis of neuroinflammatory, apoptotic, and neurite outgrowth markers. RESULTS: Behavioural testing revealed that GA did not mitigate motor deficits after TBI. TBI caused an increase in cortical and hippocampal expression of several markers of neuroinflammation and apoptosis compared to sham groups. GA treatment did not attenuate these increases in expression, possibly contributed to by our finding of TrkA receptor down-regulation post-TBI. CONCLUSIONS: These findings suggest that GA treatment may not be suitable for attenuating TBI pathology and improving outcomes.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Receptor trkA/agonistas , Xantonas/uso terapêutico , Análise de Variância , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Proteínas de Ligação ao Cálcio/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Comportamento Exploratório/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptor trkA/genética , Receptor trkA/metabolismo , Teste de Desempenho do Rota-Rod , Resultado do Tratamento
13.
Brain Behav Immun ; 66: 359-371, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28782716

RESUMO

Traumatic brain injury (TBI) and long bone fracture are common in polytrauma. This injury combination in mice results in elevated levels of the pro-inflammatory cytokine interleukin-1ß (IL-1ß) and exacerbated neuropathology when compared to isolated-TBI. Here we examined the effect of treatment with an IL-1 receptor antagonist (IL-1ra) in mice given a TBI and a concomitant tibial fracture (i.e., polytrauma). Adult male C57BL/6 mice were given sham-injuries or polytrauma and treated with saline-vehicle or IL-1ra (100mg/kg). Treatments were subcutaneously injected at 1, 6, and 24h, and then once daily for one week post-injury. 7-8 mice/group were euthanized at 48h post-injury. 12-16 mice/group underwent behavioral testing at 12weeks post-injury and MRI at 14weeks post-injury before being euthanized at 16weeks post-injury. At 48h post-injury, markers for activated microglia and astrocytes, as well as neutrophils and edema, were decreased in polytrauma mice treated with IL-1ra compared to polytrauma mice treated with vehicle. At 14weeks post-injury, MRI analysis demonstrated that IL-1ra treatment after polytrauma reduced volumetric loss in the injured cortex and mitigated track-weighted MRI markers for axonal injury. As IL-1ra (Anakinra) is approved for human use, it may represent a promising therapy in polytrauma cases involving TBI and fracture.


Assuntos
Anti-Inflamatórios/administração & dosagem , Lesões Encefálicas Traumáticas/complicações , Encefalite/tratamento farmacológico , Proteína Antagonista do Receptor de Interleucina 1/administração & dosagem , Traumatismo Múltiplo/complicações , Fraturas da Tíbia/complicações , Animais , Atrofia/complicações , Comportamento Animal , Edema Encefálico/complicações , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Encefalite/etiologia , Encefalite/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo
14.
J Neuroinflammation ; 13(1): 90, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27117191

RESUMO

BACKGROUND: Traumatic injuries are physical insults to the body that are prevalent worldwide. Many individuals involved in accidents suffer injuries affecting a number of extremities and organs, otherwise known as multitrauma or polytrauma. Traumatic brain injury is one of the most serious forms of the trauma-induced injuries and is a leading cause of death and long-term disability. Despite over dozens of phase III clinical trials, there are currently no specific treatments known to improve traumatic brain injury outcomes. These failures are in part due to our still poor understanding of the heterogeneous and evolving pathophysiology of traumatic brain injury and how factors such as concomitant extracranial injuries can impact these processes. MAIN BODY: Here, we review the available clinical and pre-clinical studies that have investigated the possible impact of concomitant injuries on traumatic brain injury pathobiology and outcomes. We then list the pathophysiological processes that may interact and affect outcomes and discuss promising areas for future research. Taken together, many of the clinical multitrauma/polytrauma studies discussed in this review suggest that concomitant peripheral injuries may increase the risk of mortality and functional deficits following traumatic brain injury, particularly when severe extracranial injuries are combined with mild to moderate brain injury. In addition, recent animal studies have provided strong evidence that concomitant injuries may increase both peripheral and central inflammatory responses and that structural and functional deficits associated with traumatic brain injury may be exacerbated in multiply injured animals. CONCLUSIONS: The findings of this review suggest that concomitant extracranial injuries are capable of modifying the outcomes and pathobiology of traumatic brain injury, in particular neuroinflammation. Though additional studies are needed to further identify the factors and mechanisms involved in central and peripheral injury interactions following multitrauma and polytrauma, concomitant injuries should be recognized and accounted for in future pre-clinical and clinical traumatic brain injury studies.


Assuntos
Lesões Encefálicas Traumáticas , Traumatismo Múltiplo , Traumatismos dos Nervos Periféricos , Animais , Humanos
15.
Ann Clin Transl Neurol ; 11(4): 989-999, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38356101

RESUMO

OBJECTIVE: Huntington's disease (HD) is an inherited neurodegenerative disease involving progressive motor abnormalities, cognitive decline, and psychiatric disturbances. Depression and cognitive difficulties are among the most impactful symptoms of HD, yet the pathogenesis of these symptoms is not fully understood. HD involves low-level chronic inflammation and dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, which are linked to depression and cognitive impairment in non-HD populations. However, previous research on the relationships of these pathologies with depression and cognition in HD is limited and inconsistent. METHODS: Fifty-three adults with the HD gene expansion (30 premanifest and 23 manifest) completed measures of depression and cognitive functioning. Forty-eight out of 53 participants provided hair samples for quantification of cortisol, and 34 participants provided blood samples for quantification of peripheral inflammatory cytokines. We examined the associations of four cytokines (interleukin [IL]-6, IL-10, IL-1ß, and tumor necrosis factor [TNF]-α) and cortisol levels with depression and cognitive scores. RESULTS: In unadjusted models, higher levels of plasma IL-6, IL-10, and TNF-α correlated with higher depression scores, and higher levels of IL-10 and TNF-α correlated with poorer cognitive performance. After controlling for age, sex, and body mass index, only the correlations of IL-10 with depression and cognitive performance remained significant. No correlations were evident with hair cortisol. INTERPRETATIONS: Peripheral inflammation is associated with depression symptoms and cognitive impairment in HD. Our findings suggest that interactions between the immune and nervous systems are important in HD, and highlight the potential of chronic inflammation as a therapeutic target in early stages of HD.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Adulto , Humanos , Doença de Huntington/diagnóstico , Citocinas , Hidrocortisona , Interleucina-10 , Fator de Necrose Tumoral alfa , Interleucina-6 , Inflamação
16.
J Cereb Blood Flow Metab ; 44(4): 542-555, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37933736

RESUMO

Mild traumatic brain injury (mTBI) involves damage to the cerebrovascular system. Vascular endothelial growth factor-A (VEGF-A) is an important modulator of vascular health and VEGF-A promotes the brain's ability to recover after more severe forms of brain injury; however, the role of VEGF-A in mTBI remains poorly understood. Bevacizumab (BEV) is a monoclonal antibody that binds to VEGF-A and neutralises its actions. To better understand the role of VEGF-A in mTBI recovery, this study examined how BEV treatment affected outcomes in rats given a mTBI. Adult Sprague-Dawley rats were assigned to sham-injury + vehicle treatment (VEH), sham-injury + BEV treatment, mTBI + VEH treatment, mTBI + BEV treatment groups. Treatment was administered intracerebroventricularly via a cannula beginning at the time of injury and continuing until the end of the study. Rats underwent behavioral testing after injury and were euthanized on day 11. In both females and males, BEV had a negative impact on cognitive function. mTBI and BEV treatment increased the expression of inflammatory markers in females. In males, BEV treatment altered markers related to hypoxia and vascular health. These novel findings of sex-specific responses to BEV and mTBI provide important insights into the role of VEGF-A in mTBI.


Assuntos
Concussão Encefálica , Masculino , Feminino , Ratos , Animais , Bevacizumab , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ratos Sprague-Dawley , Modelos Animais de Doenças
17.
Neurotrauma Rep ; 5(1): 74-80, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463419

RESUMO

Traumatic brain injuries (TBIs) and concussions are prevalent in collision sports, and there is evidence that levels of exposure to such sports may increase the risk of neurological abnormalities. Elevated levels of fluid-based biomarkers have been observed after concussions or among athletes with a history of participating in collision sports, and certain biomarkers exhibit sensitivity toward neurodegeneration. This study investigated a cohort of 28 male amateur athletes competing in "Masters" competitions for persons >35 years of age. The primary objective of this study was to compare the levels of blood and saliva biomarkers associated with brain injury, inflammation, aging, and neurodegeneration between athletes with an extensive history of collision sport participation (i.e., median = 27 years; interquartile range = 18-44, minimum = 8) and those with no history. Plasma proteins associated with neural damage and neurodegeneration were measured using Simoa® assays, and saliva was analyzed for markers associated with inflammation and telomere length using quantitative real-time polymerase chain reaction. There were no significant differences between collision and non-collision sport athletes for plasma levels of glial fibrillary acidic protein, neurofilament light, ubiquitin C-terminal hydrolase L1, tau, tau phosphorylated at threonine 181, and brain-derived neurotrophic factor. Moreover, salivary levels of genes associated with inflammation and telomere length were similar between groups. There were no significant differences between groups in symptom frequency or severity on the Sport Concussion Assessment Tool-5th Edition. Overall, these findings provide preliminary evidence that biomarkers associated with neural tissue damage, neurodegeneration, and inflammation may not exhibit significant alterations in asymptomatic amateur athletes with an extensive history of amateur collision sport participation.

18.
JAMA Netw Open ; 7(6): e2415983, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38848061

RESUMO

Importance: Sport-related concussion (SRC), a form of mild traumatic brain injury, is a prevalent occurrence in collision sports. There are no well-established approaches for tracking neurobiologic recovery after SRC. Objective: To examine the levels of serum glial fibrillary acidic protein (GFAP) and neurofilament light (NfL) in Australian football athletes who experience SRC. Design, Setting, and Participants: A cohort study recruiting from April 10, 2021, to September 17, 2022, was conducted through the Victorian Amateur Football Association, Melbourne, Australia. Participants included adult Australian football players with or without SRC. Data analysis was performed from May 26, 2023, to March 27, 2024. Exposure: Sport-related concussion, defined as at least 1 observable sign and/or 2 or more symptoms. Main Outcomes and Measures: Primary outcomes were serum GFAP and NfL levels at 24 hours, and 1, 2, 4, 6, 8, 12, and 26 weeks. Secondary outcomes were symptoms, cognitive performance, and return to training times. Results: Eighty-one individuals with SRC (median age, 22.8 [IQR, 21.3-26.0] years; 89% male) and 56 control individuals (median age, 24.6 [IQR, 22.4-27.3] years; 96% male) completed a total of 945 of 1057 eligible testing sessions. Compared with control participants, those with SRC exhibited higher GFAP levels at 24 hours (mean difference [MD] in natural log, pg/mL, 0.66 [95% CI, 0.50-0.82]) and 4 weeks (MD, 0.17 [95% CI, 0.02-0.32]), and NfL from 1 to 12 weeks (1-week MD, 0.31 [95% CI, 0.12-0.51]; 2-week MD, 0.38 [95% CI, 0.19-0.58]; 4-week MD, 0.31 [95% CI, 0.12-0.51]; 6-week MD, 0.27 [95% CI, 0.07-0.47]; 8-week MD, 0.36 [95% CI, 0.15-0.56]; and 12-week MD, 0.25 [95% CI, 0.04-0.46]). Growth mixture modeling identified 2 GFAP subgroups: extreme prolonged (16%) and moderate transient (84%). For NfL, 3 subgroups were identified: extreme prolonged (7%), moderate prolonged (15%), and minimal or no change (78%). Individuals with SRC who reported loss of consciousness (LOC) (33% of SRC cases) had higher GFAP at 24 hours (MD, 1.01 [95% CI, 0.77-1.24]), 1 week (MD, 0.27 [95% CI, 0.06-0.49]), 2 weeks (MD, 0.21 [95% CI, 0.004-0.42]) and 4 weeks (MD, 0.34 [95% CI, 0.13-0.55]), and higher NfL from 1 week to 12 weeks (1-week MD, 0.73 [95% CI, 0.42-1.03]; 2-week MD, 0.91 [95% CI, 0.61-1.21]; 4-week MD, 0.90 [95% CI, 0.59-1.20]; 6-week MD, 0.81 [95% CI, 0.50-1.13]; 8-week MD, 0.73 [95% CI, 0.42-1.04]; and 12-week MD, 0.54 [95% CI, 0.22-0.85]) compared with SRC participants without LOC. Return to training times were longer in the GFAP extreme compared with moderate subgroup (incident rate ratio [IRR], 1.99 [95% CI, 1.69-2.34]; NfL extreme (IRR, 3.24 [95% CI, 2.63-3.97]) and moderate (IRR, 1.43 [95% CI, 1.18-1.72]) subgroups compared with the minimal subgroup, and for individuals with LOC compared with those without LOC (IRR, 1.65 [95% CI, 1.41-1.93]). Conclusions and Relevance: In this cohort study, a subset of SRC cases, particularly those with LOC, showed heightened and prolonged increases in GFAP and NfL levels, that persisted for at least 4 weeks. These findings suggest that serial biomarker measurement could identify such cases, guiding return to play decisions based on neurobiologic recovery. While further investigation is warranted, the association between prolonged biomarker elevations and LOC may support the use of more conservative return to play timelines for athletes with this clinical feature.


Assuntos
Traumatismos em Atletas , Biomarcadores , Concussão Encefálica , Proteína Glial Fibrilar Ácida , Humanos , Concussão Encefálica/sangue , Concussão Encefálica/fisiopatologia , Concussão Encefálica/complicações , Masculino , Feminino , Biomarcadores/sangue , Adulto , Proteína Glial Fibrilar Ácida/sangue , Traumatismos em Atletas/sangue , Traumatismos em Atletas/complicações , Traumatismos em Atletas/fisiopatologia , Adulto Jovem , Futebol Americano/lesões , Austrália , Proteínas de Neurofilamentos/sangue , Estudos de Coortes , Recuperação de Função Fisiológica/fisiologia , Atletas/estatística & dados numéricos
19.
Adv Physiol Educ ; 37(2): 153-6, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23728132

RESUMO

Many conventional science courses contain subjects embedded with laboratory-based activities. However, research on the benefits of positioning the practicals within the theory subject or developing them distinctly from the theory is largely absent. This report compared results in a physiology theory subject among three different cohorts of students: those taking the theory subject alone, those taking it concurrent with a physiology practicum subject, and those who previously took the subject when it had practicums embedded within the one subject. The path model shows that students taking both physiology theory and physiology practicum attained a significantly higher result in online tests compared with those who took the theory subject alone (P < 0.05) and that this translated to a significantly higher result in the end-of-semester examination. Similarly, students taking both physiology theory and the physiology practicum attained a significantly higher end-examination result compared with those who took the physiology subject in previous years when the practicums were embedded within the theory subject (P < 0.05). In both cases, this increase was largely attained in components that tested critical thinking and deep learning (short theory application questions and extended written questions). We conclude that students undertaking both physiology theory and the physiology practicum likely performed better in the theory subject due to better problem-solving skills and a more developed understanding of theoretical content. We suggest that consideration be given in all science curricula to the separation of theory and practicum by developing two subjects with clearly defined different learning outcomes.


Assuntos
Aprendizagem , Fisiologia/educação , Ensino/métodos , Compreensão , Currículo , Avaliação Educacional , Humanos , Modelos Educacionais , Aprendizagem Baseada em Problemas
20.
Arch Clin Neuropsychol ; 38(4): 537-547, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36309850

RESUMO

OBJECTIVE: Professional jockeys experience high rates of concussion, workplace stress, and poor mental health. The present cross-sectional study, for the first time, concurrently assessed the potential interplay between concussion history and workplace stress with current depression symptoms. METHOD: Seventy-two professional flat-track jockeys (male = 49, female = 23) were grouped based on self-reported concussion history (CG; n = 56) and those who did not report a concussion history (NCG; total n = 16). Analyses featured both between (CG vs NCG) and within group (CG only) assessment on self-reported measures of workplace stress and depression symptoms (affect, daily functioning). RESULTS: Jockeys in the CG had more symptoms of negative affect than the NCG. This association, however, was nonsignificant after covarying for age, gender, and workplace stress. Higher workplace stress (p = .005) and gender (p = .001) were associated with poorer daily functioning after controlling for concussion history (CG vs. NCG) and age. Gender moderated the association between concussion group and poorer daily functioning (ß = -18.739, t (71) = -2.924, p = .005), with the difference between CG and NCG significant for females, but not males (ß = 33.648, t (71) = 3.420, p = .001). CONCLUSIONS: The findings provide preliminary evidence that previously concussed females may be more likely to report poorer daily functioning than males with a history of concussion, and that workplace stress may reduce the association between a history of concussion and depression symptoms. Prospective studies are required to validate and extend these findings.


Assuntos
Traumatismos em Atletas , Concussão Encefálica , Estresse Ocupacional , Humanos , Feminino , Depressão/complicações , Traumatismos em Atletas/diagnóstico , Estudos Transversais , Testes Neuropsicológicos , Atletas/psicologia , Concussão Encefálica/complicações , Concussão Encefálica/diagnóstico , Estresse Ocupacional/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA