Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(20): e2321919121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38713625

RESUMO

Successful regeneration of missing tissues requires seamless integration of positional information along the body axes. Planarians, which regenerate from almost any injury, use conserved, developmentally important signaling pathways to pattern the body axes. However, the molecular mechanisms which facilitate cross talk between these signaling pathways to integrate positional information remain poorly understood. Here, we report a p21-activated kinase (smed-pak1) which functionally integrates the anterior-posterior (AP) and the medio-lateral (ML) axes. pak1 inhibits WNT/ß-catenin signaling along the AP axis and, functions synergistically with the ß-catenin-independent WNT signaling of the ML axis. Furthermore, this functional integration is dependent on warts and merlin-the components of the Hippo/Yorkie (YKI) pathway. Hippo/YKI pathway is a critical regulator of body size in flies and mice, but our data suggest the pathway regulates body axes patterning in planarians. Our study provides a signaling network integrating positional information which can mediate coordinated growth and patterning during planarian regeneration.


Assuntos
Planárias , Via de Sinalização Wnt , Quinases Ativadas por p21 , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Planárias/fisiologia , Planárias/genética , Planárias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Regeneração , Transativadores/metabolismo , Transativadores/genética
2.
Proc Natl Acad Sci U S A ; 120(5): e2204427120, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36693105

RESUMO

Physical inactivity is a scourge to human health, promoting metabolic disease and muscle wasting. Interestingly, multiple ecological niches have relaxed investment into physical activity, providing an evolutionary perspective into the effect of adaptive physical inactivity on tissue homeostasis. One such example, the Mexican cavefish Astyanax mexicanus, has lost moderate-to-vigorous activity following cave colonization, reaching basal swim speeds ~3.7-fold slower than their river-dwelling counterpart. This change in behavior is accompanied by a marked shift in body composition, decreasing total muscle mass and increasing fat mass. This shift persisted at the single muscle fiber level via increased lipid and sugar accumulation at the expense of myofibrillar volume. Transcriptomic analysis of laboratory-reared and wild-caught cavefish indicated that this shift is driven by increased expression of pparγ-the master regulator of adipogenesis-with a simultaneous decrease in fast myosin heavy chain expression. Ex vivo and in vivo analysis confirmed that these investment strategies come with a functional trade-off, decreasing cavefish muscle fiber shortening velocity, time to maximal force, and ultimately maximal swimming speed. Despite this, cavefish displayed a striking degree of muscular endurance, reaching maximal swim speeds ~3.5-fold faster than their basal swim speeds. Multi-omic analysis suggested metabolic reprogramming, specifically phosphorylation of Pgm1-Threonine 19, as a key component enhancing cavefish glycogen metabolism and sustained muscle contraction. Collectively, we reveal broad skeletal muscle changes following cave colonization, displaying an adaptive skeletal muscle phenotype reminiscent to mammalian disuse and high-fat models while simultaneously maintaining a unique capacity for sustained muscle contraction via enhanced glycogen metabolism.


Assuntos
Characidae , Animais , Humanos , Characidae/genética , Evolução Biológica , Glicogênio , Músculos , México , Cavernas , Mamíferos
3.
Dev Biol ; 448(1): 7-15, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30641041

RESUMO

A mechanistic understanding of evolutionary developmental biology requires the development of novel techniques for the manipulation of gene function in phylogenetically diverse organismal systems. Recently, gene-specific knockdown by microinjection of short hairpin RNA (shRNA) was applied in the sea anemone Nematostella vectensis, demonstrating that the shRNA approach can be used for efficient and robust sequence-specific knockdown of a gene of interest. However, the time- and labor-intensive process of microinjection limits access to this technique and its application in large scale experiments. To address this issue, here we present an electroporation protocol for shRNA delivery into Nematostella eggs. This method leverages the speed and simplicity of electroporation, enabling users to manipulate gene expression in hundreds of eggs or embryos within minutes. We provide a detailed description of the experimental procedure, including reagents, electroporation conditions, preparation of Nematostella eggs, and follow-up care of experimental animals. Finally, we demonstrate the knockdown of several endogenous and exogenous genes with known phenotypes and discuss the potential applications of this method.


Assuntos
Eletroporação/métodos , Embrião não Mamífero/embriologia , Técnicas de Silenciamento de Genes/métodos , Oócitos/metabolismo , RNA Interferente Pequeno/biossíntese , Anemone , Animais , Embrião não Mamífero/citologia , Oócitos/citologia , RNA Interferente Pequeno/genética
4.
Nature ; 500(7462): 359-62, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23873041

RESUMO

During epithelial cell proliferation, planar alignment of the mitotic spindle coordinates the local process of symmetric cell cleavage with the global maintenance of polarized tissue architecture. Although the disruption of planar spindle alignment is proposed to cause epithelial to mesenchymal transition and cancer, the in vivo mechanisms regulating mitotic spindle orientation remain elusive. Here we demonstrate that the actomyosin cortex and the junction-localized neoplastic tumour suppressors Scribbled and Discs large 1 have essential roles in planar spindle alignment and thus the control of epithelial integrity in the Drosophila imaginal disc. We show that defective alignment of the mitotic spindle correlates with cell delamination and apoptotic death, and that blocking the death of misaligned cells is sufficient to drive the formation of basally localized tumour-like masses. These findings indicate a key role for junction-mediated spindle alignment in the maintenance of epithelial integrity, and also reveal a previously unknown cell-death-mediated tumour-suppressor function inherent in the polarized architecture of epithelia.


Assuntos
Drosophila/citologia , Drosophila/metabolismo , Células Epiteliais/metabolismo , Junções Intercelulares/metabolismo , Fuso Acromático/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células Epiteliais/citologia , Regulação da Expressão Gênica no Desenvolvimento , Fuso Acromático/genética
5.
iScience ; 26(2): 106001, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36866042

RESUMO

Planarians possess naturally occurring pluripotent adult somatic stem cells (neoblasts) required for homeostasis and whole-body regeneration. However, no reliable neoblast culture methods are currently available, hindering mechanistic studies of pluripotency and the development of transgenic tools. We report robust methods for neoblast culture and delivery of exogenous mRNAs. We identify optimal culture media for the short-term maintenance of neoblasts in vitro and show via transplantation that cultured stem cells retain pluripotency for two days. We developed a procedure that significantly improves neoblast yield and purity by modifying standard flow cytometry methods. These methods enable the introduction and expression of exogenous mRNAs in neoblasts, overcoming a key hurdle impeding the application of transgenics in planarians. The advances in cell culture reported here create new opportunities for mechanistic studies of planarian adult stem cell pluripotency, and provide a systematic framework to develop cell culture techniques in other emerging research organisms.

6.
EMBO J ; 27(12): 1727-35, 2008 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-18511910

RESUMO

In recent years, it has been shown that helicases are able to perform functions beyond their traditional role in unwinding of double-stranded nucleic acids; yet the mechanistic aspects of these different activities are not clear. Our kinetic studies of Holliday junction branch migration catalysed by a ring-shaped helicase, T7 gp4, show that heterology of as little as a single base stalls catalysed branch migration. Using single-molecule analysis, one can locate the stall position to within a few base pairs of the heterology. Our data indicate that the presence of helicase alone promotes junction unfolding, which accelerates spontaneous branch migration, and individual time traces reveal complex trajectories consistent with random excursions of the branch point. Our results suggest that instead of actively unwinding base pairs as previously thought, the helicase exploits the spontaneous random walk of the junction and acts as a Brownian ratchet, which walks along duplex DNA while facilitating and biasing branch migration in a specific direction.


Assuntos
Bacteriófago T7/enzimologia , DNA Helicases/metabolismo , DNA Cruciforme/metabolismo , Pareamento Incorreto de Bases , Catálise , DNA Cruciforme/genética , Transferência Ressonante de Energia de Fluorescência , Cinética , Especificidade por Substrato , Temperatura
7.
Nat Methods ; 6(2): 131-3, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19169260

RESUMO

Photoconvertible fluorescent proteins are potential tools for investigating dynamic processes in living cells and for emerging super-resolution microscopy techniques. Unfortunately, most probes in this class are hampered by oligomerization, small photon budgets or poor photostability. Here we report an EosFP variant that functions well in a broad range of protein fusions for dynamic investigations, exhibits high photostability and preserves the approximately 10-nm localization precision of its parent.


Assuntos
Corantes Fluorescentes/química , Proteínas Luminescentes/química , Animais , Fibroblastos , Células HeLa , Humanos , Proteínas Luminescentes/genética , Microscopia de Fluorescência/métodos , Mutagênese Sítio-Dirigida , Processos Fotoquímicos , Proteínas Recombinantes de Fusão/química
8.
Nat Methods ; 6(12): 875-81, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19898485

RESUMO

Genetically encoded calcium indicators (GECIs) can be used to image activity in defined neuronal populations. However, current GECIs produce inferior signals compared to synthetic indicators and recording electrodes, precluding detection of low firing rates. We developed a single-wavelength GCaMP2-based GECI (GCaMP3), with increased baseline fluorescence (3-fold), increased dynamic range (3-fold) and higher affinity for calcium (1.3-fold). We detected GCaMP3 fluorescence changes triggered by single action potentials in pyramidal cell dendrites, with signal-to-noise ratio and photostability substantially better than those of GCaMP2, D3cpVenus and TN-XXL. In Caenorhabditis elegans chemosensory neurons and the Drosophila melanogaster antennal lobe, sensory stimulation-evoked fluorescence responses were significantly enhanced with GCaMP3 (4-6-fold). In somatosensory and motor cortical neurons in the intact mouse, GCaMP3 detected calcium transients with amplitudes linearly dependent on action potential number. Long-term imaging in the motor cortex of behaving mice revealed large fluorescence changes in imaged neurons over months.


Assuntos
Caenorhabditis elegans/citologia , Cálcio/metabolismo , Drosophila melanogaster/citologia , Neurônios/metabolismo , Animais , Encéfalo/metabolismo , Caenorhabditis elegans/metabolismo , Linhagem Celular , Drosophila melanogaster/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Camundongos
9.
Nat Commun ; 13(1): 3494, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715400

RESUMO

The stinging organelles of jellyfish, sea anemones, and other cnidarians, known as nematocysts, are remarkable cellular weapons used for both predation and defense. Nematocysts consist of a pressurized capsule containing a coiled harpoon-like thread. These structures are in turn built within specialized cells known as nematocytes. When triggered, the capsule explosively discharges, ejecting the coiled thread which punctures the target and rapidly elongates by turning inside out in a process called eversion. Due to the structural complexity of the thread and the extreme speed of discharge, the precise mechanics of nematocyst firing have remained elusive7. Here, using a combination of live and super-resolution imaging, 3D electron microscopy, and genetic perturbations, we define the step-by-step sequence of nematocyst operation in the model sea anemone Nematostella vectensis. This analysis reveals the complex biomechanical transformations underpinning the operating mechanism of nematocysts, one of nature's most exquisite biological micro-machines. Further, this study will provide insight into the form and function of related cnidarian organelles and serve as a template for the design of bioinspired microdevices.


Assuntos
Cifozoários , Anêmonas-do-Mar , Animais , Microscopia Eletrônica , Nematocisto/química , Organelas , Anêmonas-do-Mar/genética
10.
Elife ; 92020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32969790

RESUMO

Two distinct mechanisms for primordial germ cell (PGC) specification are observed within Bilatera: early determination by maternal factors or late induction by zygotic cues. Here we investigate the molecular basis for PGC specification in Nematostella, a representative pre-bilaterian animal where PGCs arise as paired endomesodermal cell clusters during early development. We first present evidence that the putative PGCs delaminate from the endomesoderm upon feeding, migrate into the gonad primordia, and mature into germ cells. We then show that the PGC clusters arise at the interface between hedgehog1 and patched domains in the developing mesenteries and use gene knockdown, knockout and inhibitor experiments to demonstrate that Hh signaling is required for both PGC specification and general endomesodermal patterning. These results provide evidence that the Nematostella germline is specified by inductive signals rather than maternal factors, and support the existence of zygotically-induced PGCs in the eumetazoan common ancestor.


Assuntos
Padronização Corporal/genética , Camadas Germinativas , Proteínas Hedgehog , Anêmonas-do-Mar , Transdução de Sinais/genética , Animais , Feminino , Técnicas de Silenciamento de Genes , Células Germinativas/citologia , Células Germinativas/metabolismo , Camadas Germinativas/citologia , Camadas Germinativas/crescimento & desenvolvimento , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Estágios do Ciclo de Vida/genética , Masculino , Anêmonas-do-Mar/citologia , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/crescimento & desenvolvimento
11.
Elife ; 92020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33108274

RESUMO

Meiotic drivers are parasitic loci that force their own transmission into greater than half of the offspring of a heterozygote. Many drivers have been identified, but their molecular mechanisms are largely unknown. The wtf4 gene is a meiotic driver in Schizosaccharomyces pombe that uses a poison-antidote mechanism to selectively kill meiotic products (spores) that do not inherit wtf4. Here, we show that the Wtf4 proteins can function outside of gametogenesis and in a distantly related species, Saccharomyces cerevisiae. The Wtf4poison protein forms dispersed, toxic aggregates. The Wtf4antidote can co-assemble with the Wtf4poison and promote its trafficking to vacuoles. We show that neutralization of the Wtf4poison requires both co-assembly with the Wtf4antidote and aggregate trafficking, as mutations that disrupt either of these processes result in cell death in the presence of the Wtf4 proteins. This work reveals that wtf parasites can exploit protein aggregate management pathways to selectively destroy spores.


Meiotic drivers are genes that break the normal rules of inheritance. Usually, a gene has a 50% chance of passing on to the next generation. Meiotic drivers force their way into the next generation by poisoning the gametes (the sex cells that combine to form a zygote) that do not carry them. Harnessing the power of genetic drivers could allow scientists to spread beneficial genes across populations. One group of meiotic drivers found in fission yeast is called the 'with transposon fission yeast', or 'wtf' gene family. The wtf drivers act during the production of spores, which are the fission yeast equivalent of sperm, and they encode both a poison that can destroy the spores and its antidote. The poison spreads through the sac holding the spores, and can affect all of them, while the antidote only protects the spores that make it. This means that the spores carrying the wtf genes survive, while the rest of the spores are killed. To understand whether it is possible to use the wtf meiotic drivers to spread other genes, perhaps outside of fission yeast, scientists must first establish exactly how the proteins coded for by genes behave. To do this, Nuckolls et al. examined a member of the wtf family called wtf4. Attaching a fluorescent label to the poison and antidote proteins produced by wtf4 made it possible to see what they do. This revealed that the poison clumps, forming toxic aggregates that damage yeast spores. The antidote works by mopping up these aggregates and moving them to the cell's main storage compartment, called the vacuole. Mutations that disrupted the ability of the antidote to interact with the poison or its ability to move the poison into storage stopped the antidote from working. Nuckolls et al. also showed that if genetic engineering was used to introduce wtf4 into a distantly related species of budding yeast the effects of this meiotic driver were the same. This suggests that the wtf genes may be good candidates for future genetic engineering experiments. Engineered systems known as 'gene drives' could spread beneficial genetic traits through populations. This could include disease-resistance genes in crops, or disease-preventing genes in mosquitoes. The wtf genes are small and work independently of other genes, making them promising candidates for this type of system. These experiments also suggest that the wtf genes could be useful for understanding why clumps of proteins are toxic to cells. Future work could explore why clumps of wtf poison kill spores, while clumps of poison plus antidote do not. This could aid research into human ailments caused by protein clumps, such as Huntington's or Alzheimer's disease.


Assuntos
Morte Celular/genética , Genes Fúngicos , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Agregados Proteicos/genética
12.
J Cell Biol ; 218(6): 1824-1838, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31088859

RESUMO

Proper orientation of the mitotic spindle is essential for cell fate determination, tissue morphogenesis, and homeostasis. During epithelial proliferation, planar spindle alignment ensures the maintenance of polarized tissue architecture, and aberrant spindle orientation can disrupt epithelial integrity. Nevertheless, in vivo mechanisms that restrict the mitotic spindle to the plane of the epithelium remain poorly understood. Here we show that the junction-localized tumor suppressors Scribbled (Scrib) and Discs large (Dlg) control planar spindle orientation via Mud and 14-3-3 proteins in the Drosophila wing disc epithelium. During mitosis, Scrib is required for the junctional localization of Dlg, and both affect mitotic spindle movements. Using coimmunoprecipitation and mass spectrometry, we identify 14-3-3 proteins as Dlg-interacting partners and further report that loss of 14-3-3s causes both abnormal spindle orientation and disruption of epithelial architecture as a consequence of basal cell delamination and apoptosis. Combined, these biochemical and genetic analyses indicate that 14-3-3s function together with Scrib, Dlg, and Mud during planar cell division.


Assuntos
Proteínas 14-3-3/metabolismo , Polaridade Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Fuso Acromático/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Asas de Animais/citologia , Proteínas 14-3-3/genética , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Morfogênese , Fuso Acromático/genética , Proteínas Supressoras de Tumor/genética , Asas de Animais/metabolismo
13.
Front Neuroanat ; 13: 88, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31636546

RESUMO

A shift in environmental conditions impacts the evolution of complex developmental and behavioral traits. The Mexican cavefish, Astyanax mexicanus, is a powerful model for examining the evolution of development, physiology, and behavior because multiple cavefish populations can be compared to an extant, ancestral-like surface population of the same species. Many behaviors have diverged in cave populations of A. mexicanus, and previous studies have shown that cavefish have a loss of sleep, reduced stress, an absence of social behaviors, and hyperphagia. Despite these findings, surprisingly little is known about the changes in neuroanatomy that underlie these behavioral phenotypes. Here, we use serial sectioning to generate brain atlases of surface fish and three independent cavefish populations. Volumetric reconstruction of serial-sectioned brains confirms convergent evolution on reduced optic tectum volume in all cavefish populations tested. In addition, we quantified volumes of specific neuroanatomical loci within several brain regions that have previously been implicated in behavioral regulation, including the hypothalamus, thalamus, and habenula. These analyses reveal an enlargement of the hypothalamus in all cavefish populations relative to surface fish, as well as subnuclei-specific differences within the thalamus and prethalamus. Taken together, these analyses support the notion that changes in environmental conditions are accompanied by neuroanatomical changes in brain structures associated with behavior. This atlas provides a resource for comparative neuroanatomy of additional brain regions and the opportunity to associate brain anatomy with evolved changes in behavior.

14.
Elife ; 62017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28072387

RESUMO

Planarian neoblasts are pluripotent, adult somatic stem cells and lineage-primed progenitors that are required for the production and maintenance of all differentiated cell types, including the germline. Neoblasts, originally defined as undifferentiated cells residing in the adult parenchyma, are frequently compared to embryonic stem cells yet their developmental origin remains obscure. We investigated the provenance of neoblasts during Schmidtea mediterranea embryogenesis, and report that neoblasts arise from an anarchic, cycling piwi-1+ population wholly responsible for production of all temporary and definitive organs during embryogenesis. Early embryonic piwi-1+ cells are molecularly and functionally distinct from neoblasts: they express unique cohorts of early embryo enriched transcripts and behave differently than neoblasts in cell transplantation assays. Neoblast lineages arise as organogenesis begins and are required for construction of all major organ systems during embryogenesis. These subpopulations are continuously generated during adulthood, where they act as agents of tissue homeostasis and regeneration.


Assuntos
Células-Tronco Adultas/fisiologia , Homeostase , Planárias/embriologia , Regeneração , Animais , Linhagem da Célula
15.
Chem Biol ; 12(2): 217-28, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15734649

RESUMO

Conversion of a centrally located phosphate group to an electrically neutral methyl phosphonate in a four-way DNA junction can exert a major influence on its conformation. However, the effect is strongly dependent on stereochemistry. Substitution of the proR oxygen atom by methyl leads to conformational transition to the stacking conformer that places this phosphate at the point of strand exchange. By contrast, corresponding modification of the proS oxygen destabilizes this conformation of the junction. Single-molecule analysis shows that both molecules are in a dynamic equilibrium between alternative stacking conformers, but the configuration of the methyl phosphonate determines the bias of the conformational equilibrium. It is likely that the stereochemical environment of the methyl group affects the interaction with metal ions in the center of the junction.


Assuntos
DNA/química , DNA/ultraestrutura , Ligação de Hidrogênio , Modelos Moleculares , Conformação de Ácido Nucleico , Organofosfonatos , Estereoisomerismo
16.
Zebrafish ; 13(6): 537-540, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27057799

RESUMO

Genetic manipulations are a vital instrument for the study of embryonic development where to understand how genes work, it is necessary to provoke a loss or gain of function of a particular gene in a spatial and temporal manner. In the zebrafish embryo, the Hsp70 promoter is the most commonly used tool to induce a transient global gene expression of a desired gene, in a temporal manner. However, Hsp70-driven global gene induction presents caveats when studying gene function in a tissue of interest as gene induction in the whole embryo can lead to cell-autonomous and non-cell-autonomous phenotypes. In the current article, we describe an innovative and cost effective protocol to activate Hsp70-dependent expression in a small subset of cells in the zebrafish embryo, by utilizing a localized infrared (IR) laser. Our IR laser set up can be incorporated to any microscope platform without the requirement for expensive equipment. Furthermore, our protocol allows for controlled localized induction of specific proteins under the control of the hsp70 promoter in small subsets of cells. We use the migrating zebrafish sensory lateral line primordium as a model, because of its relative simplicity and experimental accessibility; however, this technique can be applied to any tissue in the zebrafish embryo.


Assuntos
Desenvolvimento Embrionário/efeitos da radiação , Regulação da Expressão Gênica no Desenvolvimento , Técnicas Genéticas , Resposta ao Choque Térmico/genética , Temperatura Alta , Peixe-Zebra/fisiologia , Animais , Desenvolvimento Embrionário/genética , Técnicas Genéticas/economia , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Raios Infravermelhos/efeitos adversos , Lasers , Regiões Promotoras Genéticas , Peixe-Zebra/embriologia , Peixe-Zebra/genética
17.
Elife ; 52016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27441386

RESUMO

The interrelationship between endogenous microbiota, the immune system, and tissue regeneration is an area of intense research due to its potential therapeutic applications. We investigated this relationship in Schmidtea mediterranea, a model organism capable of regenerating any and all of its adult tissues. Microbiome characterization revealed a high Bacteroidetes to Proteobacteria ratio in healthy animals. Perturbations eliciting an expansion of Proteobacteria coincided with ectopic lesions and tissue degeneration. The culture of these bacteria yielded a strain of Pseudomonas capable of inducing progressive tissue degeneration. RNAi screening uncovered a TAK1 innate immune signaling module underlying compromised tissue homeostasis and regeneration during infection. TAK1/MKK/p38 signaling mediated opposing regulation of apoptosis during infection versus normal tissue regeneration. Given the complex role of inflammation in either hindering or supporting reparative wound healing and regeneration, this invertebrate model provides a basis for dissecting the duality of evolutionarily conserved inflammatory signaling in complex, multi-organ adult tissue regeneration.


Assuntos
Microbioma Gastrointestinal , Sistema de Sinalização das MAP Quinases , Platelmintos/microbiologia , Platelmintos/fisiologia , Regeneração , Animais , Apoptose
18.
Dev Cell ; 38(4): 413-29, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27523733

RESUMO

A large population of proliferative stem cells (neoblasts) is required for physiological tissue homeostasis and post-injury regeneration in planarians. Recent studies indicate that survival of a few neoblasts after sublethal irradiation results in the clonal expansion of the surviving stem cells and the eventual restoration of tissue homeostasis and regenerative capacity. However, the precise mechanisms regulating the population dynamics of neoblasts remain largely unknown. Here, we uncovered a central role for epidermal growth factor (EGF) signaling during in vivo neoblast expansion mediated by Smed-egfr-3 (egfr-3) and its putative ligand Smed-neuregulin-7 (nrg-7). Furthermore, the EGF receptor-3 protein localizes asymmetrically on the cytoplasmic membrane of neoblasts, and the ratio of asymmetric to symmetric cell divisions decreases significantly in egfr-3(RNAi) worms. Our results not only provide the first molecular evidence of asymmetric stem cell divisions in planarians, but also demonstrate that EGF signaling likely functions as an essential regulator of neoblast clonal expansion.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Proteínas de Helminto/genética , Planárias/citologia , Regeneração/fisiologia , Células-Tronco/citologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Apoptose/genética , Divisão Celular Assimétrica/genética , Proliferação de Células/genética , DNA Helicases/metabolismo , Instabilidade Genômica/genética , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais , Células-Tronco/efeitos da radiação
19.
J Mol Biol ; 341(3): 739-51, 2004 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-15288783

RESUMO

The four-way DNA (Holliday) junction is an essential intermediate in DNA recombination, and its dynamic characteristics are likely to be important in its cellular processing. In our previous study we observed transitions between two antiparallel stacked conformations using a single-molecule fluorescence approach. The magnesium concentration-dependent rates of transitions between stacking conformers suggested that an unstacked open structure, which is stable in the absence of metal ions, is an intermediate. Here, we sought to detect possible rare species such as open and parallel conformations and further characterized ionic effects. The hypothesized open intermediate cannot be resolved directly due to the limited time resolution and sensitivity, but our study suggests that the open form is achieved very frequently, hundreds of times per second under physiologically relevant conditions. Therefore despite being a minority species, its frequent formation raises the probability that it could become stabilized by protein binding. By contrast, we cannot detect even a transient existence of the junctions in a parallel form, and the probability of such forms with a lifetime greater than 5 ms is less than 0.01%. Stacking conformer transitions are observable in the presence of sodium or hexammine cobalt (III) ions as well as magnesium ions, but the transition rates are higher for lower valence ions at the same concentrations. This further supports the notion that electrostatic stabilization of the stacked structures dictates the interconversion rates between different structural forms.


Assuntos
DNA Cruciforme , Cobalto/química , DNA/química , Relação Dose-Resposta a Droga , Transferência Ressonante de Energia de Fluorescência , Vetores Genéticos , Íons , Magnésio/química , Magnésio/farmacologia , Conformação de Ácido Nucleico , Polimorfismo Genético , Ligação Proteica , Conformação Proteica , Recombinação Genética , Software , Espectrofotometria , Fatores de Tempo
20.
Elife ; 4: e10501, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26457503

RESUMO

Neoblasts are an abundant, heterogeneous population of adult stem cells (ASCs) that facilitate the maintenance of planarian tissues and organs, providing a powerful system to study ASC self-renewal and differentiation dynamics. It is unknown how the collective output of neoblasts transit through differentiation pathways to produce specific cell types. The planarian epidermis is a simple tissue that undergoes rapid turnover. We found that as epidermal progeny differentiate, they progress through multiple spatiotemporal transition states with distinct gene expression profiles. We also identified a conserved early growth response family transcription factor, egr-5, that is essential for epidermal differentiation. Disruption of epidermal integrity by egr-5 RNAi triggers a global stress response that induces the proliferation of neoblasts and the concomitant expansion of not only epidermal, but also multiple progenitor cell populations. Our results further establish the planarian epidermis as a novel paradigm to uncover the molecular mechanisms regulating ASC specification in vivo.


Assuntos
Células-Tronco Adultas/fisiologia , Diferenciação Celular , Fatores de Transcrição de Resposta de Crescimento Precoce/metabolismo , Células Epiteliais/fisiologia , Animais , Fatores de Transcrição de Resposta de Crescimento Precoce/antagonistas & inibidores , Fatores de Transcrição de Resposta de Crescimento Precoce/genética , Epiderme/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Inativação Gênica , Planárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA