RESUMO
Background Prostate cancer recurrence is found in up to 40% of men with prior definitive (total prostatectomy or whole-prostate radiation) treatment. Prostate-specific membrane antigen PET agents such as 2-(3-{1-carboxy-5-[(6-[18F]fluoro-pyridine 3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid (18F-DCFPyL) may improve detection of recurrence compared with multiparametric MRI; however, histopathologic validation is lacking. Purpose To determine the sensitivity, specificity, and positive predictive value (PPV) of 18F-DCFPyL PET/CT based on histologic analysis and to compare with pelvic multiparametric MRI in men with biochemically recurrent prostate cancer. Materials and Methods Men were prospectively recruited after prostatectomy and/or radiation therapy with rising prostate-specific antigen level (median, 2.27 ng/mL; range, 0.2-27.45 ng/mL) and a negative result at conventional imaging (bone scan and/or CT). Participants underwent 18F-DCFPyL PET/CT imaging and 3.0-T pelvic multiparametric MRI. Statistical analysis included Wald and modified χ2 tests. Results A total of 323 lesions were visualized in 77 men by using 18F-DCFPyL or multiparametric MRI, with imaging detection concordance of 25% (82 of 323) when including all lesions in the MRI field of view and 53% (52 of 99) when only assessing prostate bed lesions. 18F-DCFPyL depicted more pelvic lymph nodes than did MRI (128 vs 23 nodes). Histologic validation was obtained in 80 locations with sensitivity, specificity, and PPV of 69% (25 of 36; 95% confidence interval [CI]: 51%, 88%), 91% (40 of 44; 95% CI: 74%, 98%), and 86% (25 of 29; 95% CI: 73%, 97%) for 18F-DCFPyL and 69% (24 of 35; 95% CI: 50%, 86%), 74% (31 of 42; 95% CI: 42%, 89%), and 69% (24 of 35; 95% CI: 50%, 88%) for multiparametric MRI (P = .95, P = .14, and P = .07, respectively). In the prostate bed, sensitivity, specificity, and PPV were 57% (13 of 23; 95% CI: 32%, 81%), 86% (18 of 21; 95% CI: 73%, 100%), and 81% (13 of 16; 95% CI: 59%, 100%) for 18F-DCFPyL and 83% (19 of 23; 95% CI: 59%, 100%), 52% (11 of 21; 95% CI: 29%, 74%), and 66% (19 of 29; 95% CI: 44%, 86%) for multiparametric MRI (P = .19, P = .02, and P = .17, respectively). The addition of 18F-DCFPyL to multiparametric MRI improved PPV by 38% overall (P = .02) and by 30% (P = .09) in the prostate bed. Conclusion Findings with 2-(3-{1-carboxy-5-[(6-[18F]fluoro-pyridine 3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid (18F-DCFPyL) were histologically validated and demonstrated high specificity and positive predictive value. In the pelvis, 18F-DCFPyL depicted more lymph nodes and improved positive predictive value and specificity when added to multiparametric MRI. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Zukotynski and Rowe in this issue.
Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Próstata , Neoplasias da Próstata , Idoso , Meios de Contraste/uso terapêutico , Humanos , Lisina/análogos & derivados , Lisina/uso terapêutico , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Próstata/química , Próstata/diagnóstico por imagem , Próstata/patologia , Neoplasias da Próstata/química , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Sensibilidade e Especificidade , Ureia/análogos & derivados , Ureia/uso terapêuticoRESUMO
OBJECTIVE: The objective of our study was to determine the optimal dose of ferumoxytol for performing MR lymphography (MRL) at 3 T in patients with prostate cancer. SUBJECTS AND METHODS: This phase I trial enrolled patients undergoing radical prostatectomy (RP) with bilateral pelvic lymph node dissection (PLND). Three groups of five patients each (total of 15 patients) received IV ferumoxytol before RP with bilateral PLND at each of the following doses of iron: 4, 6, and 7.5 mg Fe/kg. Patients underwent abdominopelvic MRI at 3 T before and 24 hours after ferumoxytol injection using T2- and T2*-weighted sequences. Normalized signal intensity (SI) and normalized SD changes from baseline to 24 hours after injection within visible lymph nodes were calculated for each dose level. Linear mixed effects models were used to estimate the effects of dose on the percentage SI change and log-transformed SD change within visible lymph nodes to determine the optimal dose of ferumoxytol for achieving uniform low SI in normal nodes. RESULTS: One patient who was excluded from the study group had a mild allergic reaction requiring treatment after approximately 2.5 mg Fe/kg ferumoxytol injection whereupon the injection was interrupted. The 15 study group patients tolerated ferumoxytol at all dose levels. The mean percentage SI change in 13 patients with no evidence of lymph metastasis was -36.4%, -45.4%, and -65.1% for 4, 6, and 7.5 mg Fe/kg doses, respectively (p = 0.041). CONCLUSION: A dose level of 7.5 mg Fe/kg ferumoxytol was safe and effective in deenhancing benign lymph nodes. This dose therefore can be the starting point for future phase II studies regarding the efficacy of ferumoxytol for MRL.
Assuntos
Óxido Ferroso-Férrico , Metástase Linfática/patologia , Linfografia/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/patologia , Idoso , Óxido Ferroso-Férrico/administração & dosagem , Humanos , Excisão de Linfonodo , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Prostatectomia , Neoplasias da Próstata/cirurgiaRESUMO
PURPOSE: To characterize uptake of 1-amino-3-fluorine 18-fluorocyclobutane-1-carboxylic acid ((18)F FACBC) in patients with localized prostate cancer, benign prostatic hyperplasia (BPH), and normal prostate tissue and to evaluate its potential utility in delineation of intraprostatic cancers in histopathologically confirmed localized prostate cancer in comparison with magnetic resonance (MR) imaging. MATERIALS AND METHODS: Institutional review board approval and written informed consent were obtained for this HIPAA-compliant prospective study. Twenty-one men underwent dynamic and static abdominopelvic (18)F FACBC combined positron emission tomography (PET) and computed tomography (CT) and multiparametric (MP) 3-T endorectal MR imaging before robotic-assisted prostatectomy. PET/CT and MR images were coregistered by using pelvic bones as fiducial markers; this was followed by manual adjustments. Whole-mount histopathologic specimens were sliced with an MR-based patient-specific mold. (18)F FACBC PET standardized uptake values (SUVs) were compared with those at MR imaging and histopathologic analysis for lesion- and sector-based (20 sectors per patient) analysis. Positive and negative predictive values for each modality were estimated by using generalized estimating equations with logit link function and working independence correlation structure. RESULTS: (18)F FACBC tumor uptake was rapid but reversible. It peaked 3.6 minutes after injection and reached a relative plateau at 15-20 minutes (SUVmax[15-20min]). Mean prostate tumor SUVmax(15-20min) was significantly higher than that of the normal prostate (4.5 ± 0.5 vs 2.7 ± 0.5) (P < .001); however, it was not significantly different from that of BPH (4.3 ± 0.6) (P = .27). Sector-based comparison with histopathologic analysis, including all tumors, revealed sensitivity and specificity of 67% and 66%, respectively, for (18)F FACBC PET/CT and 73% and 79%, respectively, for T2-weighted MR imaging. (18)F FACBC PET/CT and MP MR imaging were used to localize dominant tumors (sensitivity of 90% for both). Combined (18)F FACBC and MR imaging yielded positive predictive value of 82% for tumor localization, which was higher than that with either modality alone (P < .001). CONCLUSION: (18)F FACBC PET/CT shows higher uptake in intraprostatic tumor foci than in normal prostate tissue; however, (18)F FACBC uptake in tumors is similar to that in BPH nodules. Thus, it is not specific for prostate cancer. Nevertheless, combined (18)F FACBC PET/CT and T2-weighted MR imaging enable more accurate localization of prostate cancer lesions than either modality alone.
Assuntos
Ácidos Carboxílicos , Ciclobutanos , Imageamento por Ressonância Magnética , Imagem Multimodal , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata/diagnóstico por imagem , Compostos Radiofarmacêuticos , Tomografia Computadorizada por Raios X , Adulto , Idoso , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Hiperplasia Prostática/diagnóstico por imagem , Hiperplasia Prostática/patologia , Neoplasias da Próstata/patologiaRESUMO
PURPOSE: To determine whether multiparametric magnetic resonance (MR) imaging can help identify patients with prostate cancer who would most appropriately be candidates for active surveillance (AS) according to current guidelines and to compare the results with those of conventional clinical assessment scoring systems, including the D'Amico, Epstein, and Cancer of the Prostate Risk Assessment (CAPRA) systems, on the basis of findings at prostatectomy. MATERIALS AND METHODS: This institutional review board-approved HIPAA-compliant retrospectively designed study included 133 patients (mean age, 59.3 years) with a mean prostate-specific antigen level of 6.73 ng/mL (median, 4.39 ng/mL) who underwent multiparametric MR imaging at 3.0 T before radical prostatectomy. Informed consent was obtained from all patients. Patients were then retrospectively classified as to whether they would have met AS eligibility criteria or were better served by surgery. AS eligibility criteria for prostatectomy specimens were a dominant tumor smaller than 0.5 mL without Gleason 4 or 5 patterns or extracapsular or seminal vesicle invasion. Conventional clinical assessment scores (the D'Amico, Epstein, and CAPRA scoring systems) were compared with multiparametric MR imaging findings for predicting AS candidates. The level of significance of difference between scoring systems was determined by using the χ(2) test for categoric variables with the level of significance set at P < .05. RESULTS: Among 133 patients, 14 were eligible for AS on the basis of prostatectomy results. The sensitivity, positive predictive value (PPV), and overall accuracy, respectively, were 93%, 25%, and 70% for the D'Amico system, 64%, 45%, and 88% for the Epstein criteria, and 93%, 20%, and 59% for the CAPRA scoring system for predicting AS candidates (P < .005 for all, χ(2) test), while multiparametric MR imaging had a sensitivity of 93%, a PPV of 57%, and an overall accuracy of 92% (P < .005). CONCLUSION: Multiparametric MR imaging provides useful additional information to existing clinicopathologic scoring systems of prostate cancer and improves the assignment of treatment (eg, AS or active treatment).
Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/patologia , Adulto , Idoso , Biópsia , Distribuição de Qui-Quadrado , Meios de Contraste , Gadolínio DTPA , Humanos , Masculino , Pessoa de Meia-Idade , Vigilância da População , Valor Preditivo dos Testes , Antígeno Prostático Específico/sangue , Estudos Retrospectivos , Sensibilidade e EspecificidadeRESUMO
PURPOSE: The biology of prostate cancer may be influenced by the index lesion. The definition of index lesion volume is important for appropriate decision making, especially for image guided focal treatment. We determined the accuracy of magnetic resonance imaging for determining index tumor volume compared with volumes derived from histopathology. MATERIALS AND METHODS: We evaluated 135 patients (mean age 59.3 years) with a mean prostate specific antigen of 6.74 ng/dl who underwent multiparametric 3T endorectal coil magnetic resonance imaging of the prostate and subsequent radical prostatectomy. Index tumor volume was determined prospectively and independently by magnetic resonance imaging and histopathology. The ellipsoid formula was applied to determine histopathology tumor volume, whereas manual tumor segmentation was used to determine magnetic resonance tumor volume. Histopathology tumor volume was correlated with age and prostate specific antigen whereas magnetic resonance tumor volume involved Pearson correlation and linear regression methods. In addition, the predictive power of magnetic resonance tumor volume, prostate specific antigen and age for estimating histopathology tumor volume (greater than 0.5 cm(3)) was assessed by ROC analysis. The same analysis was also conducted for the 1.15 shrinkage factor corrected histopathology data set. RESULTS: There was a positive correlation between histopathology tumor volume and magnetic resonance tumor volume (Pearson coefficient 0.633, p <0.0001), but a weak correlation between prostate specific antigen and histopathology tumor volume (Pearson coefficient 0.237, p = 0.003). On linear regression analysis histopathology tumor volume and magnetic resonance tumor volume were correlated (r(2) = 0.401, p <0.00001). On ROC analysis AUC values for magnetic resonance tumor volume, prostate specific antigen and age in estimating tumors larger than 0.5 cm(3) at histopathology were 0.949 (p <0.0000001), 0.685 (p = 0.001) and 0.627 (p = 0.02), respectively. Similar results were found in the analysis with shrinkage factor corrected tumor volumes at histopathology. CONCLUSIONS: Magnetic resonance imaging can accurately estimate index tumor volume as determined by histology. Magnetic resonance imaging has better accuracy in predicting histopathology tumor volume in tumors larger than 0.5 cm(3) than prostate specific antigen and age. Index tumor volume as determined by magnetic resonance imaging may be helpful in planning treatment, specifically in identifying tumor margins for image guided focal therapy and possibly selecting better active surveillance candidates.
Assuntos
Imageamento por Ressonância Magnética , Neoplasias da Próstata/patologia , Carga Tumoral , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Estudos RetrospectivosRESUMO
Our objective was to investigate the factors predicting scan positivity and disease location in patients with biochemical recurrence (BCR) of prostate cancer (PCa) after primary local therapy using prostate-specific membrane antigen-targeted 18F-DCFPyL PET/CT. Methods: This was a 2-institution study including 245 BCR PCa patients after primary local therapy and negative results on conventional imaging. The patients underwent 18F-DCFPyL PET/CT. We tested for correlations of lesion detection rate and disease location with tumor characteristics, time from initial therapy, prostate-specific antigen (PSA) level, and PSA doubling time (PSAdt). Multivariate logistic regression analyses were used to determine predictors of a positive scan. Regression-based coefficients were used to develop nomograms predicting scan positivity and extrapelvic disease. Results: Overall, 79.2% (194/245) of patients had a positive 18F-DCFPyL PET/CT result, with detection rates of 48.2% (27/56), 74.3% (26/35), 84% (37/44), 96.7% (59/61), and 91.8% (45/49) for PSAs of <0.5, 0.5 to <1.0, 1.0 to <2.0, 2.0 to <5.0, and ≥5.0 ng/mL, respectively. Patients with lesions confined to the pelvis had lower PSAs than those with distant sites (1.6 ± 3.5 vs. 3.0 ± 6.3 ng/mL, P < 0.001). In patients treated with prostatectomy (n = 195), 24.1% (47/195) had a negative scan result, 46.1% (90/195) showed intrapelvic disease, and 29.7% (58/195) showed extrapelvic disease. In the postradiation subgroup (n = 50), 18F-DCFPyL PET/CT was always negative at a PSA lower than 1.0 ng/mL and extrapelvic disease was seen only when PSA was greater than 2.0 ng/mL. At multivariate analysis, PSA and PSAdt were independent predictive factors of scan positivity and the presence of extrapelvic disease in postsurgical patients, with area under the curve of 78% and 76%, respectively. PSA and PSAdt were independent predictors of the presence of extrapelvic disease in the postradiation cohort, with area under the curve of 85%. Time from treatment to scan was significantly longer for prostatectomy-bed-only recurrences than for those with bone or visceral disease (6.2 ± 6.4 vs. 2.4 ± 1.3 y, P < 0.001). Conclusion:18F-DCFPyL PET/CT offers high detection rates in BCR PCa patients. PSA and PSAdt are able to predict scan positivity and disease location. Furthermore, the presence of bone or visceral lesions is associated with shorter intervals from treatment than are prostate-bed-only recurrences. These tools might guide clinicians to select the most suitable candidates for 18F-DCFPyL PET/CT imaging.
Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Humanos , Masculino , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/cirurgia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Prostatectomia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/terapia , RecidivaRESUMO
PURPOSE: We determined the prostate cancer detection rate of multiparametric magnetic resonance imaging at 3T. Precise one-to-one histopathological correlation with magnetic resonance imaging was possible using prostate magnetic resonance imaging based custom printed specimen molds after radical prostatectomy. MATERIALS AND METHODS: This institutional review board approved prospective study included 45 patients (mean age 60.2 years, range 49 to 75) with a mean prostate specific antigen of 6.37 ng/ml (range 2.3 to 23.7) who had biopsy proven prostate cancer (mean Gleason score of 6.7, range 6 to 9). Before prostatectomy all patients underwent prostate magnetic resonance imaging using endorectal and surface coils on a 3T scanner, which included triplane T2-weighted magnetic resonance imaging, apparent diffusion coefficient maps of diffusion weighted magnetic resonance imaging, dynamic contrast enhanced magnetic resonance imaging and spectroscopy. The prostate specimen was whole mount sectioned in a customized mold, allowing geometric alignment to magnetic resonance imaging. Tumors were mapped on magnetic resonance imaging and histopathology. Sensitivity, specificity, positive predictive value and negative predictive value of magnetic resonance imaging for cancer detection were calculated. In addition, the effects of tumor size and Gleason score on the sensitivity of multiparametric magnetic resonance imaging were evaluated. RESULTS: The positive predictive value of multiparametric magnetic resonance imaging to detect prostate cancer was 98%, 98% and 100% in the overall prostate, peripheral zone and central gland, respectively. The sensitivity of magnetic resonance imaging sequences was higher for tumors larger than 5 mm in diameter as well as for those with higher Gleason scores (greater than 7, p <0.05). CONCLUSIONS: Prostate magnetic resonance imaging at 3T allows for the detection of prostate cancer. A multiparametric approach increases the predictive power of magnetic resonance imaging for diagnosis. In this study accurate correlation between multiparametric magnetic resonance imaging and histopathology was obtained by the patient specific, magnetic resonance imaging based mold technique.
Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/patologia , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estudos Prospectivos , Prostatectomia , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/cirurgia , Glândulas Seminais/patologia , Sensibilidade e EspecificidadeRESUMO
OATP1B3 is expressed de novo in primary prostate cancer tissue and to a greater degree in prostate cancer metastases. Gadoxetate disodium is a substrate of OATP1B3, and its uptake has been shown to correlate with OATP1B3 expression in other cancers. We aimed to evaluate use of gadoxetate disodium to image prostate cancer and to track its utility as a biomarker. A single center open-label non-randomized pilot study recruited men with (1) localized, and (2) metastatic castration resistant prostate cancer (mCRPC). Gadoxetate disodium-enhanced MRI was performed at four timepoints post-injection. The Wilcoxon signed rank test was used to compare MRI contrast enhancement ratio (CER) pre-injection and post-injection. OATP1B3 expression was evaluated via immunohistochemistry (IHC) and a pharmacogenomic analysis of OATP1B3, NCTP and OATP1B1 was conducted. The mCRPC subgroup (n = 9) demonstrated significant enhancement compared to pre-contrast images at 20-, 40- and 60-min timepoints (p < 0.0078). The localized cancer subgroup (n = 11) demonstrated earlier enhancement compared to the mCRPC group, but no retention over time (p > 0.05). OATP1B3 expression on IHC trended higher contrast enhancement between 20-40 min (p ≤ 0.064) and was associated with contrast enhancement at 60 min (p = 0.0422). OATP1B1 haplotype, with N130D and V174A substitutions, impacted enhancement at 40-60 min (p ≤ 0.038). mCRPC lesions demonstrate enhancement after injection of gadoxetate disodium on MRI and retention over 60 min. As inter-individual variability in OATP1B3 expression and function has both predictive and prognostic significance, gadoxetate disodium has potential as a biomarker in prostate cancer.
Assuntos
Gadolínio DTPA/química , Imageamento por Ressonância Magnética , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/patologia , Genótipo , Humanos , Masculino , Metástase Neoplásica , Projetos Piloto , Neoplasias da Próstata/genética , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismoRESUMO
PURPOSE: To determine utility of multiparametric imaging performed at 3 T for detection of prostate cancer by using T2-weighted magnetic resonance (MR) imaging, MR spectroscopy, and dynamic contrast material-enhanced MR imaging, with whole-mount pathologic findings as reference standard. MATERIALS AND METHODS: This prospectively designed, HIPAA-compliant, single-institution study was approved by the local institutional review board. Seventy consecutive patients (mean age, 60.4 years; mean prostate-specific antigen level, 5.47 ng/mL [5.47 microg/L]; range, 1-19.9 ng/mL [1-19.9 microg/L]) were included; informed consent was obtained from each patient. All patients had biopsy-proved prostate cancer, with a median Gleason score of 7 (range, 6-9). Images were obtained by using a combination of six-channel cardiac and endorectal coils. MR imaging and pathologic findings were evaluated independently and blinded and then correlated with histopathologic findings by using side-by-side comparison. Analyses were conducted with a raw stringent approach and an alternative neighboring method, which accounted for surgical deformation, shrinkage, and nonuniform slicing factors in pathologic specimens. Generalized estimating equations (GEEs) were used to estimate the predictive value of region-specific, pathologically determined cancer for all three modalities. This approach accounts for the correlation among multiple regions in the same individual. RESULTS: For T2-weighted MR imaging, sensitivity and specificity values obtained with stringent approach were 0.42 (95% confidence interval [CI]: 0.36, 0.47) and 0.83 (95% CI: 0.81, 0.86), and for the alternative neighboring approach, sensitivity and specificity values were 0.73 (95% CI: 0.67, 0.78) and 0.89 (95% CI: 0.85, 0.93), respectively. The combined diagnostic accuracy of T2-weighted MR imaging, dynamic contrast-enhanced MR imaging, and MR spectroscopy for peripheral zone tumors was examined by calculating their predictive value with different combinations of techniques; T2-weighted MR imaging, dynamic contrast-enhanced MR imaging, and MR spectroscopy provided significant independent and additive predictive value when GEEs were used (P < .001, P = .02, P = .002, respectively). CONCLUSION: Multiparametric MR imaging (T2-weighted MR imaging, MR spectroscopy, dynamic contrast-enhanced MR imaging) of the prostate at 3 T enables tumor detection, with reasonable sensitivity and specificity values.
Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/diagnóstico , Adulto , Idoso , Biópsia , Intervalos de Confiança , Meios de Contraste , Gadolínio DTPA , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Prostatectomia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Sensibilidade e Especificidade , Estatísticas não ParamétricasRESUMO
Our objective was to investigate the lesion detection rate of 18F-DCFPyL PET/CT, a prostate-specific membrane antigen (PSMA)-targeted PET agent, in patients with biochemically relapsed prostate cancer after primary local therapy. Methods: This was a prospective institutional review board-approved study of 90 patients with documented biochemical recurrence (median prostate-specific antigen [PSA], 2.5 ng/mL; range, 0.21-35.5 ng/mL) and negative results on conventional imaging after primary local therapies, including radical prostatectomy (n = 38), radiation (n = 27), or a combination of the two (n = 25). Patients on androgen deprivation therapy were excluded. Patients underwent whole-body 18F-DCFPyL PET/CT (299.9 ± 15.5 MBq) at 2 h after injection. The PSMA PET lesion detection rate was correlated with PSA, PSA kinetics, and original primary tumor grade. Results: Seventy patients (77.8%) showed positive PSMA PET results, with a total of 287 lesions identified: 37 prostate bed foci, 208 lesions in lymph nodes, and 42 in distant sites in bones or organs, Eleven patients had negative results, and 9 patients showed indeterminate lesions, which were considered negative in this study. The detection rates were 47.6% (n = 10/21), 50% (n = 5/10), 88.9% (n = 8/9), and 94% (n = 47/50) for PSA levels of >0.2 to <0.5, 0.5 to <1.0, 1 to <2.0, and ≥2.0 ng/mL, respectively. In postsurgical patients, PSA, PSA doubling time, and PSA velocity correlated with PET results, but the same was not true for postradiation patients. These parameters also correlated with the extent of disease on PET (intrapelvic vs. extrapelvic). There was no significant difference in the rate of positive scans between patients with higher-grade and lower-grade primary tumors (Gleason score of ≥4 + 3 vs. <3 + 4). Tumor recurrence was histology-confirmed in 40% (28/70) of patients. On a per-patient basis, positive predictive value was 93.3% (95% confidence interval, 77.6%-99.2%) by histopathologic validation and 96.2% (95% confidence interval, 86.3%-99.7%) by the combination of histology and imaging/clinical follow-up. Conclusion:18F-DCFPyL PET/CT imaging offers high detection rates in biochemically recurrent prostate cancer patients and is positive in about 50% of patients with a PSA level of less than 0.5 ng/mL, which could substantially impact clinical management. In postsurgical patients, 18F-DCFPyL PET/CT correlates with PSA, PSA doubling time, and PSA velocity, suggesting it may have prognostic value. 18F-DCFPyL PET/CT is highly promising for localizing sites of recurrent prostate cancer.
Assuntos
Lisina/análogos & derivados , Recidiva Local de Neoplasia/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Neoplasias da Próstata/diagnóstico por imagem , Compostos Radiofarmacêuticos , Ureia/análogos & derivados , Idoso , Idoso de 80 Anos ou mais , Antígenos de Superfície/análise , Glutamato Carboxipeptidase II/análise , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/sangue , Neoplasias da Próstata/patologiaRESUMO
BACKGROUND: Carbonic anhydrase IX (CA-IX) is a potential imaging biomarker of clear cell renal cell carcinoma (ccRCC). Here, we report the results of a phase II clinical trial of a small molecule radiotracer targeting CA-IX ((18)F-VM4-037) in ccRCC. METHODS: Between October 2012 and May 2013, 11 patients with kidney masses underwent (18)F-VM4-037 PET/CT prior to surgery. Dynamic imaging was performed for the first 45 min post injection and whole-body imaging was obtained at 60 min post injection. Tumors were surgically excised or biopsied within 4 weeks of imaging. RESULTS: All patients tolerated the radiotracer well with no adverse events. Ten of the 11 patients had histologically confirmed malignancy. One patient had a Bosniak Type 3 cyst with no tumor found at surgery. Two patients had extrarenal disease and 9 had tumors only in the kidney. Primary ccRCC lesions were difficult to visualize on PET alone due to high uptake of the tracer in the adjacent normal kidney parenchyma, however when viewed in conjunction with CT, the tumors were easily localized. Metastatic lesions were clearly visible on PET. Mean SUV for primary kidney lesions was 2.55 in all patients; in patients with histologically confirmed ccRCC, the mean SUV was 3.16. The time-activity curves (TAC) are consistent with reversible ligand binding with peak activity concentration at 8 min post injection followed by washout. Distribution Volume Ratio (DVR) of the lesions was measured using the Logan graphical analysis method. The mean DVR value across the 9 kidney lesions was 5.2 ± 2.8, (range 0.68-10.34). CONCLUSION: 18F-VM4-037 is a well-tolerated PET agent that allows same day imaging of CA-IX expression. The agent demonstrated moderate signal uptake in primary tumors and excellent visualization of CA-IX positive metastases. While the evaluation of primary ccRCC lesions is challenging due to high background activity in the normal kidney parenchyma, 18F-VM4-037 may be most useful in the evaluation of metastatic ccRCC lesions.