RESUMO
INTRODUCTION: Sentinel lymph node biopsy (SLNB) is a standard practice for staging cutaneous melanoma. High false-negative rates have an increased interest in adjunctive techniques for localizing SLNs. Mobile gamma cameras (MGCs) represent potential tools to enhance SLNB performance. METHODS: An institutional review board approval was obtained for this study (ClinicalTrials.gov ID NCT01531608). After obtaining informed consent, 20 eligible melanoma patients underwent 99mTc sulfur colloid injection and standard lymphoscintigraphy with a fixed gamma camera (FGC). A survey using a 20 cm square MGC, performed immediately preoperatively by the study surgeon, was used to establish an operative plan while blinded to the FGC results. Subsequently, SLNB was performed using a gamma probe and a novel 6 cm diameter handheld MGC. RESULTS: A total of 24 SLN basins were detected by FGC. Prior to unblinding, all 24 basins were identified with the preoperative MGC and the operative plan established by preoperative MGC imaging was confirmed accurate by review of the FGC images. All individual sentinel lymph nodes were identified during intraoperative MGC imaging, and in 5/24 (21%) cases, surgeon-reported additional clinically useful information was obtained from the MGC. CONCLUSIONS: Preoperative MGC images provide information consistent with FGC images for planning SLNB and in some cases provide additional information that aided in surgical decision-making.
Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Câmaras gama , Linfonodos/patologia , Linfocintigrafia , Melanoma/patologia , Compostos Radiofarmacêuticos , Biópsia de Linfonodo Sentinela/métodos , Neoplasias Cutâneas/patologia , Coloide de Enxofre Marcado com Tecnécio Tc 99mRESUMO
This paper describes the development of a hand-held gamma camera for intraoperative surgical guidance that is based on silicon photomultiplier (SiPM) technology. The camera incorporates a cerium doped lanthanum bromide (LaBr3:Ce) plate scintillator, an array of 80 SiPM photodetectors and a two-layer parallel-hole collimator. The field of view is circular with a 60 mm diameter. The disk-shaped camera housing is 75 mm in diameter, approximately 40.5 mm thick and has a mass of only 1.4 kg, permitting either hand-held or arm-mounted use. All camera components are integrated on a mobile cart that allows easy transport. The camera was developed for use in surgical procedures including determination of the location and extent of primary carcinomas, detection of secondary lesions and sentinel lymph node biopsy (SLNB). Here we describe the camera design and its principal operating characteristics, including spatial resolution, energy resolution, sensitivity uniformity, and geometric linearity. The gamma camera has an intrinsic spatial resolution of 4.2 mm FWHM, an energy resolution of 21.1 % FWHM at 140 keV, and a sensitivity of 481 and 73 cps/MBq when using the single- and double-layer collimators, respectively.
RESUMO
BACKGROUND: Assessment of lymphatic status via sentinel lymph node (SLN) biopsy is an integral and crucial part of melanoma surgical oncology. The most common technique for sentinel node mapping is preoperative planar scintigraphy of an injected gamma-emitting lymphatic tracer followed by intraoperative node localization using a non-imaging gamma probe with auditory feedback. In recent years, intraoperative visualization of SLNs in 3D has become possible by coupling the probe to an external system capable of tracking its location and orientation as it is read out, thereby enabling computation of the 3D distribution of the tracer (freehand SPECT). In this project, the non-imaging probe of the fhSPECT system was replaced by a unique handheld gamma camera containing an array of sodium iodide crystals optically coupled to an array of silicon photomultipliers (SiPMs). A feasibility study was performed in which preoperative SLN mapping was performed using camera fhSPECT and the number of detected nodes was compared to that visualized by lymphoscintigraphy, probe fhSPECT, and to the number ultimately excised under non-imaging probe guidance. RESULTS: Among five subjects, SLNs were detected in nine lymphatic basins, with one to five SLNs detected per basin. A basin-by-basin comparison showed that the number of SLNs detected using camera fhSPECT exceeded that using lymphoscintigraphy and probe fhSPECT in seven of nine basins and five of five basins, respectively. (Probe fhSPECT scans were not performed for four basins.) It exceeded the number excised under non-imaging probe guidance for seven of nine basins and equaled the number excised for the other two basins. CONCLUSIONS: Freehand SPECT using a prototype SiPM-based gamma camera demonstrates high sensitivity for detection of SLNs in a preoperative setting. Camera fhSPECT is a potential means for efficiently obtaining real-time 3D activity distribution maps in applications such as image-guided percutaneous biopsy, and surgical SLN biopsy or radioguided tumor excision.
RESUMO
Tomographic breast imaging techniques can potentially improve detection and diagnosis of cancer in women with radiodense and/or fibrocystic breasts. We have developed a high-resolution positron emission mammography/tomography imaging and biopsy device (called PEM/PET) to detect and guide the biopsy of suspicious breast lesions. PET images are acquired to detect suspicious focal uptake of the radiotracer and guide biopsy of the area. Limited-angle PEM images could then be used to verify the biopsy needle position prior to tissue sampling. The PEM/PET scanner consists of two sets of rotating planar detector heads. Each detector consists of a 4 x 3 array of Hamamatsu H8500 flat panel position sensitive photomultipliers (PSPMTs) coupled to a 96 x 72 array of 2 x 2 x 15 mm(3) LYSO detector elements (pitch = 2.1 mm). Image reconstruction is performed with a three-dimensional, ordered set expectation maximization (OSEM) algorithm parallelized to run on a multi-processor computer system. The reconstructed field of view (FOV) is 15 x 15 x 15 cm(3). Initial phantom-based testing of the device is focusing upon its PET imaging capabilities. Specifically, spatial resolution and detection sensitivity were assessed. The results from these measurements yielded a spatial resolution at the center of the FOV of 2.01 +/- 0.09 mm (radial), 2.04 +/- 0.08 mm (tangential) and 1.84 +/- 0.07 mm (axial). At a radius of 7 cm from the center of the scanner, the results were 2.11 +/- 0.08 mm (radial), 2.16 +/- 0.07 mm (tangential) and 1.87 +/- 0.08 mm (axial). Maximum system detection sensitivity of the scanner is 488.9 kcps microCi(-1) ml(-1) (6.88%). These promising findings indicate that PEM/PET may be an effective system for the detection and diagnosis of breast cancer.
Assuntos
Biópsia por Agulha/instrumentação , Mamografia/instrumentação , Tomografia por Emissão de Pósitrons/instrumentação , Cirurgia Assistida por Computador/instrumentação , Biópsia por Agulha/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Mamografia/métodos , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Cirurgia Assistida por Computador/métodosRESUMO
UNLABELLED: We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. METHODS: The capability of the system for motion-corrected imaging was demonstrated with a (99m)Tc-pertechnetate phantom, (99m)Tc-methylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand (123)I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. RESULTS: AwakeSPECT provided high-resolution bone images reminiscent of those obtained from CT. The binding potential of (123)I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. CONCLUSION: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake.
Assuntos
Estado de Consciência , Imagem Molecular/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Vigília , Animais , Osso e Ossos/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Corticosterona/metabolismo , Feminino , Imageamento Tridimensional , Camundongos , Camundongos Endogâmicos BALB C , Movimento , Nortropanos , Imagens de Fantasmas , Medronato de Tecnécio Tc 99mRESUMO
Several positron emitting radioisotopes such as (11)C and (13)N can be used in plant biology research. The (11)CO(2) tracer is used to facilitate plant biology research toward optimization of plant productivity, biofuel development and carbon sequestration in biomass. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using (11)CO(2). Because plants typically have very thin leaves, little medium is present for the emitted positrons to undergo an annihilation event. The emitted positrons from (11)C (maximum energy 960 keV) could require up to approximately 4 mm of water equivalent material for positron annihilation. Thus many of the positrons do not annihilate inside the leaf, resulting in limited sensitivity for PET imaging. To address this problem we have developed a compact beta-positive, beta-minus particle imager (PhytoBeta imager) for (11)CO(2) leaf imaging. The detector is based on a Hamamatsu H8500 position sensitive photomultiplier tube optically coupled via optical grease to a 0.5 mm thick Eljen EJ-212 plastic scintillator. The detector is equipped with a flexible arm to allow its placement and orientation over or under the leaf to be studied while maintaining the leaf's original orientation. To test the utility of the system the detector was used to measure carbon translocation in a leaf of the spicebush (Lindera benzoin) under two transient light conditions.