Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 218(suppl_5): S672-S678, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29939303

RESUMO

Background: A need to develop therapeutics to treat Ebola virus disease patients in remote and resource-challenged settings remains in the wake of the 2013-2016 epidemic in West Africa. Toward this goal, we screened drugs under consideration as treatment options and other drugs of interest, most being small molecules approved by the Food and Drug Administration. Drugs demonstrating in vitro antiviral activity were advanced for evaluation in combinations because of advantages often provided by drug cocktails. Methods: Drugs were screened for blockade of Ebola virus infection in cultured cells. Twelve drugs were tested in all (78 pair-wise) combinations, and 3 were tested in a subset of combinations. Results: Multiple synergistic drug pairs emerged, with the majority comprising 2 entry inhibitors. For the pairs of entry inhibitors studied, synergy was demonstrated at the level of virus entry into host cells. Highly synergistic pairs included aripiprazole/piperacetazine, sertraline/toremifene, sertraline/bepridil, and amodiaquine/clomiphene. Conclusions: Our study shows the feasibility of identifying pairs of approved drugs that synergistically block Ebola virus infection in cell cultures. We discuss our findings in terms of the theoretic ability of these or alternate combinations to reach therapeutic levels. Future research will assess selected combinations in small-animal models of Ebola virus disease.


Assuntos
Antivirais/administração & dosagem , Ebolavirus/efeitos dos fármacos , Animais , Antivirais/uso terapêutico , Chlorocebus aethiops , Aprovação de Drogas , Sinergismo Farmacológico , Quimioterapia Combinada , Células Vero , Vírion/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
2.
Malar J ; 17(1): 391, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367653

RESUMO

BACKGROUND: Artemisinin-resistant Plasmodium falciparum has been reported throughout the Greater Mekong subregion and threatens to disrupt current malaria control efforts worldwide. Polymorphisms in kelch13 have been associated with clinical and in vitro resistance phenotypes; however, several studies suggest that the genetic determinants of resistance may involve multiple genes. Current proposed mechanisms of resistance conferred by polymorphisms in kelch13 hint at a connection to an autophagy-like pathway in P. falciparum. RESULTS: A SNP in autophagy-related gene 18 (atg18) was associated with long parasite clearance half-life in patients following artemisinin-based combination therapy. This gene encodes PfAtg18, which is shown to be similar to the mammalian/yeast homologue WIPI/Atg18 in terms of structure, binding abilities, and ability to form puncta in response to stress. To investigate the contribution of this polymorphism, the atg18 gene was edited using CRISPR/Cas9 to introduce a T38I mutation into a k13-edited Dd2 parasite. The presence of this SNP confers a fitness advantage by enabling parasites to grow faster in nutrient-limited settings. The mutant and parent parasites were screened against drug libraries of 6349 unique compounds. While the SNP did not modulate the parasite's susceptibility to any of the anti-malarial compounds using a 72-h drug pulse, it did alter the parasite's susceptibility to 227 other compounds. CONCLUSIONS: These results suggest that the atg18 T38I polymorphism may provide additional resistance against artemisinin derivatives, but not partner drugs, even in the absence of kelch13 mutations, and may also be important in parasite survival during nutrient deprivation.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Proteínas Relacionadas à Autofagia/genética , Resistência a Medicamentos , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/genética , Sequência de Aminoácidos , Proteínas Relacionadas à Autofagia/química , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/química , Alinhamento de Sequência
3.
J Biol Chem ; 291(47): 24628-24640, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27681596

RESUMO

Deubiquitinases are important components of the protein degradation regulatory network. We report the discovery of ML364, a small molecule inhibitor of the deubiquitinase USP2 and its use to interrogate the biology of USP2 and its putative substrate cyclin D1. ML364 has an IC50 of 1.1 µm in a biochemical assay using an internally quenched fluorescent di-ubiquitin substrate. Direct binding of ML364 to USP2 was demonstrated using microscale thermophoresis. ML364 induced an increase in cellular cyclin D1 degradation and caused cell cycle arrest as shown in Western blottings and flow cytometry assays utilizing both Mino and HCT116 cancer cell lines. ML364, and not the inactive analog 2, was antiproliferative in cancer cell lines. Consistent with the role of cyclin D1 in DNA damage response, ML364 also caused a decrease in homologous recombination-mediated DNA repair. These effects by a small molecule inhibitor support a key role for USP2 as a regulator of cell cycle, DNA repair, and tumor cell growth.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Ciclina D1/metabolismo , Endopeptidases/metabolismo , Linfoma de Célula do Manto/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Inibidores de Proteases/farmacologia , Proteólise/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Ciclina D1/genética , Dano ao DNA , Reparo do DNA , Endopeptidases/genética , Humanos , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/metabolismo , Proteínas de Neoplasias/genética , Inibidores de Proteases/química , Ubiquitina Tiolesterase
4.
Proc Natl Acad Sci U S A ; 111(6): 2349-54, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24469833

RESUMO

The clinical development of drug combinations is typically achieved through trial-and-error or via insight gained through a detailed molecular understanding of dysregulated signaling pathways in a specific cancer type. Unbiased small-molecule combination (matrix) screening represents a high-throughput means to explore hundreds and even thousands of drug-drug pairs for potential investigation and translation. Here, we describe a high-throughput screening platform capable of testing compounds in pairwise matrix blocks for the rapid and systematic identification of synergistic, additive, and antagonistic drug combinations. We use this platform to define potential therapeutic combinations for the activated B-cell-like subtype (ABC) of diffuse large B-cell lymphoma (DLBCL). We identify drugs with synergy, additivity, and antagonism with the Bruton's tyrosine kinase inhibitor ibrutinib, which targets the chronic active B-cell receptor signaling that characterizes ABC DLBCL. Ibrutinib interacted favorably with a wide range of compounds, including inhibitors of the PI3K-AKT-mammalian target of rapamycin signaling cascade, other B-cell receptor pathway inhibitors, Bcl-2 family inhibitors, and several components of chemotherapy that is the standard of care for DLBCL.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linfócitos B/imunologia , Linfoma Difuso de Grandes Células B/patologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Adenina/análogos & derivados , Linhagem Celular Tumoral , Ensaios de Triagem em Larga Escala , Humanos , Linfoma Difuso de Grandes Células B/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Piperidinas
5.
Cancer Res Commun ; 4(3): 834-848, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38451783

RESUMO

Current treatment options for metastatic adrenocortical carcinoma (ACC) have limited efficacy, despite the common use of mitotane and cytotoxic agents. This study aimed to identify novel therapeutic options for ACC. An extensive drug screen was conducted to identify compounds with potential activity against ACC cell lines. We further investigated the mechanism of action of the identified compound, TAK-243, its synergistic effects with current ACC therapeutics, and its efficacy in ACC models including patient-derived organoids and mouse xenografts. TAK-243, a clinical ubiquitin-activating enzyme (UAE) inhibitor, showed potent activity in ACC cell lines. TAK-243 inhibited protein ubiquitination in ACC cells, leading to the accumulation of free ubiquitin, activation of the unfolded protein response, and induction of apoptosis. TAK-243 was found to be effluxed out of cells by MDR1, a drug efflux pump, and did not require Schlafen 11 (SLFN11) expression for its activity. Combination of TAK-243 with current ACC therapies (e.g., mitotane, etoposide, cisplatin) produced synergistic or additive effects. In addition, TAK-243 was highly synergistic with BCL2 inhibitors (Navitoclax and Venetoclax) in preclinical ACC models including patient-derived organoids. The tumor suppressive effects of TAK-243 and its synergistic effects with Venetoclax were further confirmed in a mouse xenograft model. These findings provide preclinical evidence to support the initiation of a clinical trial of TAK-243 in patients with advanced-stage ACC. TAK-243 is a promising potential treatment option for ACC, either as monotherapy or in combination with existing therapies or BCL2 inhibitors. SIGNIFICANCE: ACC is a rare endocrine cancer with poor prognosis and limited therapeutic options. We report that TAK-243 is active alone and in combination with currently used therapies and with BCL2 and mTOR inhibitors in ACC preclinical models. Our results suggest implementation of TAK-243 in clinical trials for patients with advanced and metastatic ACC.


Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , Antineoplásicos , Compostos Bicíclicos Heterocíclicos com Pontes , Pirazóis , Pirimidinas , Sulfetos , Sulfonamidas , Humanos , Animais , Camundongos , Carcinoma Adrenocortical/tratamento farmacológico , Mitotano , Xenoenxertos , Enzimas Ativadoras de Ubiquitina/uso terapêutico , Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Organoides , Proteínas Proto-Oncogênicas c-bcl-2/uso terapêutico , Proteínas Nucleares/uso terapêutico
6.
JCI Insight ; 8(5)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36883564

RESUMO

Small cell lung cancer (SCLC) is a recalcitrant malignancy with limited treatment options. Bromodomain and extraterminal domain inhibitors (BETis) have shown promising preclinical activity in SCLC, but the broad sensitivity spectrum limits their clinical prospects. Here, we performed unbiased high-throughput drug combination screens to identify therapeutics that could augment the antitumor activities of BETis in SCLC. We found that multiple drugs targeting the PI-3K-AKT-mTOR pathway synergize with BETis, among which mTOR inhibitors (mTORis) show the highest synergy. Using various molecular subtypes of the xenograft models derived from patients with SCLC, we confirmed that mTOR inhibition potentiates the antitumor activities of BETis in vivo without substantially increasing toxicity. Furthermore, BETis induce apoptosis in both in vitro and in vivo SCLC models, and this antitumor effect is further amplified by combining mTOR inhibition. Mechanistically, BETis induce apoptosis in SCLC by activating the intrinsic apoptotic pathway. However, BET inhibition leads to RSK3 upregulation, which promotes survival by activating the TSC2-mTOR-p70S6K1-BAD cascade. mTORis block this protective signaling and augment the apoptosis induced by BET inhibition. Our findings reveal a critical role of RSK3 induction in tumor survival upon BET inhibition and warrant further evaluation of the combination of mTORis and BETis in patients with SCLC.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Inibidores de MTOR , Carcinoma de Pequenas Células do Pulmão , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Apoptose/fisiologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Inibidores de MTOR/farmacologia , Inibidores de MTOR/uso terapêutico , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Serina-Treonina Quinases TOR
7.
J Control Release ; 357: 580-590, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37054779

RESUMO

Choroid plexus carcinoma (CPC) is a rare infantile brain tumor with an aggressive clinical course that often leaves children with debilitating side effects due to aggressive and toxic chemotherapies. Development of novel therapeutical strategies for this disease have been extremely limited owing to the rarity of the disease and the paucity of biologically relevant substrates. We conducted the first high-throughput screen (HTS) on a human patient-derived CPC cell line (Children Cancer Hospital Egypt, CCHE-45) and identified 427 top hits highlighting key molecular targets in CPC. Furthermore, a combination screen with a wide variety of targets revealed multiple synergistic combinations that may pave the way for novel therapeutical strategies against CPC. Based on in vitro efficiency, central nervous system (CNS) penetrance ability and feasible translational potential, two combinations using a DNA alkylating or topoisomerase inhibitors in combination with an ataxia telangiectasia mutated and rad3 (ATR) inhibitor (topotecan/elimusertib and melphalan/elimusertib respectively) were validated in vitro and in vivo. Pharmacokinetic assays established increased brain penetrance with intra-arterial (IA) delivery over intra-venous (IV) delivery and demonstrated a higher CNS penetrance for the combination melphalan/elimusertib. The mechanisms of synergistic activity for melphalan/elimusertib were assessed through transcriptome analyses and showed dysregulation of key oncogenic pathways (e.g. MYC, mammalian target of rapamycin mTOR, p53) and activation of critical biological processes (e.g. DNA repair, apoptosis, hypoxia, interferon gamma). Importantly, IA administration of melphalan combined with elimusertib led to a significant increase in survival in a CPC genetic mouse model. In conclusion, this study is, to the best of our knowledge, the first that identifies multiple promising combinatorial therapeutics for CPC and emphasizes the potential of IA delivery for the treatment of CPC.


Assuntos
Carcinoma , Neoplasias do Plexo Corióideo , Criança , Humanos , Camundongos , Animais , Melfalan , Neoplasias do Plexo Corióideo/tratamento farmacológico , Neoplasias do Plexo Corióideo/genética , Neoplasias do Plexo Corióideo/patologia , Topotecan , Mamíferos
8.
ACS Pharmacol Transl Sci ; 6(5): 683-701, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37200814

RESUMO

Dietary supplements and natural products are often marketed as safe and effective alternatives to conventional drugs, but their safety and efficacy are not well regulated. To address the lack of scientific data in these areas, we assembled a collection of Dietary Supplements and Natural Products (DSNP), as well as Traditional Chinese Medicinal (TCM) plant extracts. These collections were then profiled in a series of in vitro high-throughput screening assays, including a liver cytochrome p450 enzyme panel, CAR/PXR signaling pathways, and P-glycoprotein (P-gp) transporter assay activities. This pipeline facilitated the interrogation of natural product-drug interaction (NaPDI) through prominent metabolizing pathways. In addition, we compared the activity profiles of the DSNP/TCM substances with those of an approved drug collection (the NCATS Pharmaceutical Collection or NPC). Many of the approved drugs have well-annotated mechanisms of action (MOAs), while the MOAs for most of the DSNP and TCM samples remain unknown. Based on the premise that compounds with similar activity profiles tend to share similar targets or MOA, we clustered the library activity profiles to identify overlap with the NPC to predict the MOAs of the DSNP/TCM substances. Our results suggest that many of these substances may have significant bioactivity and potential toxicity, and they provide a starting point for further research on their clinical relevance.

9.
SLAS Discov ; 28(4): 193-201, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37121274

RESUMO

We report a comprehensive drug synergy study in acute myeloid leukemia (AML). In this work, we investigate a panel of cell lines spanning both MLL-rearranged and non-rearranged subtypes. The work comprises a resource for the community, with many synergistic drug combinations that could not have been predicted a priori, and open source code for automation and analyses. We base our definitions of drug synergy on the Chou-Talalay method, which is useful for visualizations of synergy experiments in isobolograms, and median-effects plots, among other representations. Our key findings include drug synergies affecting the chromatin state, specifically in the context of regulation of the modification state of histone H3 lysine-27. We report open source high throughput methodology such that multidimensional drug screening can be accomplished with equipment that is accessible to most laboratories. This study will enable preclinical investigation of new drug combinations in a lethal blood cancer, with data analysis and automation workflows freely available to the community.


Assuntos
Leucemia Mieloide Aguda , Proteína de Leucina Linfoide-Mieloide , Humanos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Histona-Lisina N-Metiltransferase , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Combinação de Medicamentos , Avaliação Pré-Clínica de Medicamentos
10.
Cancers (Basel) ; 15(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37627061

RESUMO

Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma. Despite decades of clinical trials, the overall survival rate for patients with relapsed and metastatic disease remains below 30%, underscoring the need for novel treatments. FGFR4, a receptor tyrosine kinase that is overexpressed in RMS and mutationally activated in 10% of cases, is a promising target for treatment. Here, we show that futibatinib, an irreversible pan-FGFR inhibitor, inhibits the growth of RMS cell lines in vitro by inhibiting phosphorylation of FGFR4 and its downstream targets. Moreover, we provide evidence that the combination of futibatinib with currently used chemotherapies such as irinotecan and vincristine has a synergistic effect against RMS in vitro. However, in RMS xenograft models, futibatinib monotherapy and combination treatment have limited efficacy in delaying tumor growth and prolonging survival. Moreover, limited efficacy is only observed in a PAX3-FOXO1 fusion-negative (FN) RMS cell line with mutationally activated FGFR4, whereas little or no efficacy is observed in PAX3-FOXO1 fusion-positive (FP) RMS cell lines with FGFR4 overexpression. Alternative treatment modalities such as combining futibatinib with other kinase inhibitors or targeting FGFR4 with CAR T cells or antibody-drug conjugate may be more effective than the approaches tested in this study.

11.
Nat Commun ; 14(1): 3762, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353483

RESUMO

Colorectal cancers (CRCs) are prevalent worldwide, yet current treatments remain inadequate. Using chemical genetic screens, we identify that co-inhibition of topoisomerase I (TOP1) and NEDD8 is synergistically cytotoxic in human CRC cells. Combination of the TOP1 inhibitor irinotecan or its bioactive metabolite SN38 with the NEDD8-activating enzyme inhibitor pevonedistat exhibits synergy in CRC patient-derived organoids and xenografts. Mechanistically, we show that pevonedistat blocks the ubiquitin/proteasome-dependent repair of TOP1 DNA-protein crosslinks (TOP1-DPCs) induced by TOP1 inhibitors and that the CUL4-RBX1 complex (CRL4) is a prominent ubiquitin ligase acting on TOP1-DPCs for proteasomal degradation upon auto-NEDD8 modification during replication. We identify DCAF13, a DDB1 and Cullin Associated Factor, as the receptor of TOP1-DPCs for CRL4. Our study not only uncovers a replication-coupled ubiquitin-proteasome pathway for the repair of TOP1-DPCs but also provides molecular and translational rationale for combining TOP1 inhibitors and pevonedistat for CRC and other types of cancers.


Assuntos
Neoplasias Colorretais , Inibidores da Topoisomerase I , Humanos , Inibidores da Topoisomerase I/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ligases/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Ligação a RNA
12.
J Exp Clin Cancer Res ; 42(1): 99, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37095531

RESUMO

BACKGROUND: MiT-Renal Cell Carcinoma (RCC) is characterized by genomic translocations involving microphthalmia-associated transcription factor (MiT) family members TFE3, TFEB, or MITF. MiT-RCC represents a specific subtype of sporadic RCC that is predominantly seen in young patients and can present with heterogeneous histological features making diagnosis challenging. Moreover, the disease biology of this aggressive cancer is poorly understood and there is no accepted standard of care therapy for patients with advanced disease. Tumor-derived cell lines have been established from human TFE3-RCC providing useful models for preclinical studies. METHODS: TFE3-RCC tumor derived cell lines and their tissues of origin were characterized by IHC and gene expression analyses. An unbiased high-throughput drug screen was performed to identify novel therapeutic agents for treatment of MiT-RCC. Potential therapeutic candidates were validated in in vitro and in vivo preclinical studies. Mechanistic assays were conducted to confirm the on-target effects of drugs. RESULTS: The results of a high-throughput small molecule drug screen utilizing three TFE3-RCC tumor-derived cell lines identified five classes of agents with potential pharmacological efficacy, including inhibitors of phosphoinositide-3-kinase (PI3K) and mechanistic target of rapamycin (mTOR), and several additional agents, including the transcription inhibitor Mithramycin A. Upregulation of the cell surface marker GPNMB, a specific MiT transcriptional target, was confirmed in TFE3-RCC and evaluated as a therapeutic target using the GPNMB-targeted antibody-drug conjugate CDX-011. In vitro and in vivo preclinical studies demonstrated efficacy of the PI3K/mTOR inhibitor NVP-BGT226, Mithramycin A, and CDX-011 as potential therapeutic options for treating advanced MiT-RCC as single agents or in combination. CONCLUSIONS: The results of the high-throughput drug screen and validation studies in TFE3-RCC tumor-derived cell lines have provided in vitro and in vivo preclinical data supporting the efficacy of the PI3K/mTOR inhibitor NVP-BGT226, the transcription inhibitor Mithramycin A, and GPNMB-targeted antibody-drug conjugate CDX-011 as potential therapeutic options for treating advanced MiT-RCC. The findings presented here should provide the basis for designing future clinical trials for patients with MiT-driven RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Inibidores de MTOR , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Translocação Genética , Fosfatidilinositol 3-Quinase , Glicoproteínas de Membrana/genética
13.
Nat Commun ; 14(1): 3830, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380628

RESUMO

Combination of anti-cancer drugs is broadly seen as way to overcome the often-limited efficacy of single agents. The design and testing of combinations are however very challenging. Here we present a uniquely large dataset screening over 5000 targeted agent combinations across 81 non-small cell lung cancer cell lines. Our analysis reveals a profound heterogeneity of response across the tumor models. Notably, combinations very rarely result in a strong gain in efficacy over the range of response observable with single agents. Importantly, gain of activity over single agents is more often seen when co-targeting functionally proximal genes, offering a strategy for designing more efficient combinations. Because combinatorial effect is strongly context specific, tumor specificity should be achievable. The resource provided, together with an additional validation screen sheds light on major challenges and opportunities in building efficacious combinations against cancer and provides an opportunity for training computational models for synergy prediction.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Combinação de Medicamentos
14.
Cancer Lett ; 568: 216284, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37356470

RESUMO

Drug resistance and disease progression are common in multiple myeloma (MM) patients, underscoring the need for new therapeutic combinations. A high-throughput drug screen in 47 MM cell lines and in silico Huber robust regression analysis of drug responses revealed 43 potentially synergistic combinations. We hypothesized that effective combinations would reduce MYC expression and enhance p16 activity. Six combinations cooperatively reduced MYC protein, frequently over-expressed in MM and also cooperatively increased p16 expression, frequently downregulated in MM. Synergistic reductions in viability were observed with top combinations in proteasome inhibitor-resistant and sensitive MM cell lines, while sparing fibroblasts. Three combinations significantly prolonged survival in a transplantable Ras-driven allograft model of advanced MM closely recapitulating high-risk/refractory myeloma in humans and reduced viability of ex vivo treated patient cells. Common genetic pathways similarly downregulated by these combinations promoted cell cycle transition, whereas pathways most upregulated were involved in TGFß/SMAD signaling. These preclinical data identify potentially useful drug combinations for evaluation in drug-resistant MM and reveal potential mechanisms of combined drug sensitivity.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Ensaios de Triagem em Larga Escala , Sinergismo Farmacológico , Ciclo Celular , Combinação de Medicamentos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos
15.
Nat Commun ; 13(1): 5469, 2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-36115844

RESUMO

Oncogenic RAS mutations are common in multiple myeloma (MM), an incurable malignancy of plasma cells. However, the mechanisms of pathogenic RAS signaling in this disease remain enigmatic and difficult to inhibit therapeutically. We employ an unbiased proteogenomic approach to dissect RAS signaling in MM. We discover that mutant isoforms of RAS organize a signaling complex with the amino acid transporter, SLC3A2, and MTOR on endolysosomes, which directly activates mTORC1 by co-opting amino acid sensing pathways. MM tumors with high expression of mTORC1-dependent genes are more aggressive and enriched in RAS mutations, and we detect interactions between RAS and MTOR in MM patient tumors harboring mutant RAS isoforms. Inhibition of RAS-dependent mTORC1 activity synergizes with MEK and ERK inhibitors to quench pathogenic RAS signaling in MM cells. This study redefines the RAS pathway in MM and provides a mechanistic and rational basis to target this mode of RAS signaling.


Assuntos
Genes ras , Mieloma Múltiplo , Fatores de Transcrição , Aminoácidos/metabolismo , Genes ras/genética , Genes ras/fisiologia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Mutação , Isoformas de Proteínas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Bioorg Med Chem Lett ; 21(6): 1865-70, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21353541

RESUMO

A novel class of human ß(3)-adrenergic receptor agonists was designed in effort to improve selectivity and metabolic stability versus previous disclosed ß(3)-AR agonists. As observed, many of the ß(3)-AR agonists seem to need the acyclic ethanolamine core for agonist activity. We have synthesized derivatives that constrained this moiety by introduction of a pyrrolidine. This unique modification maintains human ß(3) functional potency with improved selectivity versus ancillary targets and also eliminates the possibility of the same oxidative metabolites formed from cleavage of the N-C bond of the ethanolamine. Compound 39 exhibited excellent functional ß(3) agonist potency across species with good pharmacokinetic properties in rat, dog, and rhesus monkeys. Early de-risking of this novel pyrrolidine core (44) via full AMES study supports further research into various new ß(3)-AR agonists containing the pyrrolidine moiety.


Assuntos
Agonistas Adrenérgicos beta/química , Agonistas Adrenérgicos beta/farmacologia , Pirrolidinas/química , Receptores Adrenérgicos beta 3/efeitos dos fármacos , Cristalografia por Raios X , Descoberta de Drogas , Humanos , Modelos Moleculares
17.
Blood Cancer Discov ; 2(6): 630-647, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34778802

RESUMO

The use of Bruton tyrosine kinase (BTK) inhibitors to block B-cell receptor (BCR)-dependent NF-κB activation in lymphoid malignancies has been a major clinical advance, yet acquired therapeutic resistance is a recurring problem. We modeled the development of resistance to the BTK inhibitor ibrutinib in the activated B-cell (ABC) subtype of diffuse large B-cell lymphoma, which relies on chronic active BCR signaling for survival. The primary mode of resistance was epigenetic, driven in part by the transcription factor TCF4. The resultant phenotypic shift altered BCR signaling such that the GTPase RAC2 substituted for BTK in the activation of phospholipase Cγ2, thereby sustaining NF-κB activity. The interaction of RAC2 with phospholipase Cγ2 was also increased in chronic lymphocytic leukemia cells from patients with persistent or progressive disease on BTK inhibitor treatment. We identified clinically available drugs that can treat epigenetic ibrutinib resistance, suggesting combination therapeutic strategies. SIGNIFICANCE: In diffuse large B-cell lymphoma, we show that primary resistance to BTK inhibitors is due to epigenetic rather than genetic changes that circumvent the BTK blockade. We also observed this resistance mechanism in chronic lymphocytic leukemia, suggesting that epigenetic alterations may contribute more to BTK inhibitor resistance than currently thought.See related commentary by Pasqualucci, p. 555. This article is highlighted in the In This Issue feature, p. 549.


Assuntos
Leucemia Linfocítica Crônica de Células B , Inibidores de Proteínas Quinases , Tirosina Quinase da Agamaglobulinemia/genética , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia
18.
Cancer Cell ; 39(4): 566-579.e7, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33848478

RESUMO

Small cell neuroendocrine cancers (SCNCs) are recalcitrant cancers arising from diverse primary sites that lack effective treatments. Using chemical genetic screens, we identified inhibition of ataxia telangiectasia and rad3 related (ATR), the primary activator of the replication stress response, and topoisomerase I (TOP1), nuclear enzyme that suppresses genomic instability, as synergistically cytotoxic in small cell lung cancer (SCLC). In a proof-of-concept study, we combined M6620 (berzosertib), first-in-class ATR inhibitor, and TOP1 inhibitor topotecan in patients with relapsed SCNCs. Objective response rate among patients with SCLC was 36% (9/25), achieving the primary efficacy endpoint. Durable tumor regressions were observed in patients with platinum-resistant SCNCs, typically fatal within weeks of recurrence. SCNCs with high neuroendocrine differentiation, characterized by enhanced replication stress, were more likely to respond. These findings highlight replication stress as a potentially transformative vulnerability of SCNCs, paving the way for rational patient selection in these cancers, now treated as a single disease.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Isoxazóis/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Pirazinas/farmacologia , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Idoso , Antineoplásicos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Replicação do DNA/efeitos dos fármacos , DNA Topoisomerases Tipo I/genética , Instabilidade Genômica/genética , Humanos , Neoplasias Pulmonares/metabolismo , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Carcinoma de Pequenas Células do Pulmão/metabolismo
19.
Methods Mol Biol ; 1939: 11-35, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30848454

RESUMO

The identification of drug combinations as alternatives to single-agent therapeutics has traditionally been a slow, largely manual process. In the last 10 years, high-throughput screening platforms have been developed that enable routine screening of thousands of drug pairs in an in vitro setting. In this chapter, we describe the workflow involved in screening a single agent versus a library of mechanistically annotated, investigation, and approved drugs using a full dose-response matrix scheme using viability as the readout. We provide details of the automation required to run the screen and the informatics required to process data from screening robot and subsequent analysis and visualization of the datasets.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Acústica/instrumentação , Animais , Sobrevivência Celular/efeitos dos fármacos , Combinação de Medicamentos , Avaliação Pré-Clínica de Medicamentos/instrumentação , Desenho de Equipamento , Ensaios de Triagem em Larga Escala/instrumentação , Humanos , Software , Fluxo de Trabalho
20.
SLAS Technol ; 24(1): 28-40, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30289729

RESUMO

Glioblastoma (GBM) is a lethal brain cancer with a median survival time of approximately 15 months following treatment. Common in vitro GBM models for drug screening are adherent and do not recapitulate the features of human GBM in vivo. Here we report the genomic characterization of nine patient-derived, spheroid GBM cell lines that recapitulate human GBM characteristics in orthotopic xenograft models. Genomic sequencing revealed that the spheroid lines contain alterations in GBM driver genes such as PTEN, CDKN2A, and NF1. Two spheroid cell lines, JHH-136 and JHH-520, were utilized in a high-throughput drug screen for cell viability using a 1912-member compound library. Drug mechanisms that were cytotoxic in both cell lines were Hsp90 and proteasome inhibitors. JHH-136 was uniquely sensitive to topoisomerase 1 inhibitors, while JHH-520 was uniquely sensitive to Mek inhibitors. Drug combination screening revealed that PI3 kinase inhibitors combined with Mek or proteasome inhibitors were synergistic. However, animal studies to test these drug combinations in vivo revealed that Mek inhibition alone was superior to the combination treatments. These data show that these GBM spheroid lines are amenable to high-throughput drug screening and that this dataset may deliver promising therapeutic leads for future GBM preclinical studies.


Assuntos
Antineoplásicos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Glioblastoma/patologia , Mutação , Esferoides Celulares/efeitos dos fármacos , Antineoplásicos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA