Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Phys Chem A ; 109(32): 7181-6, 2005 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-16834082

RESUMO

The temperature dependencies of the rate coefficients, alpha(e), for electron-ion dissociative recombination (DR) of N2H+/N2D+ and HCO+/DCO+ ions with electrons have been measured over the range 100-500 K. Also, optical emissions have been detected at approximately 100 K from the N2(B3(pi)g) electronically excited products of N2H+/N2D+ recombination. The measurements were carried out using the classic FALP technique combined with an optical monochromator. For N2H+, there was no variation of alpha(e) with temperature above 200 K, with an average value of alpha(e)(N2H+) = 2.8 x 10(-7) cm3 s(-1). The temperature variation for T approximately 100-300 K observed for alpha(e)(HCO+) is similar to that of N2H+ ions for T approximately 300-500 K. The smaller rate coefficient measured for DCO+ and N2D+ ions shows the influence of an isotope effect. The substantial enhancement of the vibrational level, upsilon' = 6, from the N2B state for N2H+ recombination over N2D+ recombination is consistent with previous result at 300 K and implies the influence of a tunneling mechanism of DR.

2.
J Phys Chem A ; 109(23): 5119-23, 2005 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-16833865

RESUMO

A technique has been developed to simultaneously determine recombination rate coefficients, alpha e, and initial concentrations of ion types that coexist in a flowing afterglow plasma. This was tested using the H3(+) + allene reaction in which two different C3H3+ isomers are produced. Use of an electrostatic Langmuir probe enabled the C3H3+ isomer branching ratios for propargyl and cyclic C3H3+ from this allene reaction and their alpha e to be determined over the temperature range 172-489 K. The study showed that the cyclic C3H3+ to propargyl C3H3+ branching ratios from the allene reaction varied from 50/50 at 172 K to 18/82 at 489 K. Over this temperature range, the alpha e for both isomers change only slightly. The room temperature alpha e values for propargyl and cyclic C3H3+ are (1.15 +/- 0.2) x 10(-7) and (8.00 +/- 0.1) x 10(-7) cm3/s, respectively. The data are discussed relative to current theories and in relation to fuel-rich flame chemistry, interstellar molecular synthesis, and modeling of Titan's atmosphere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA