Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-34606460

RESUMO

Continuous sacral neuromodulation (SNM) is used to treat overactive bladder, reducing urine leakage and increasing capacity. Conditional SNM applies stimulation in response to changing bladder conditions, and is an opportunity to study neuromodulation effects in various disease states. A key advantage of this approach is saving power consumed by stimulation pulses. This study demonstrated feasibility of automatically applying neuromodulation using a wireless bladder pressure sensor, a real-time control algorithm, and the Medtronic Summit™ RC+S neurostimulation research system. This study tested feasibility of four conditional SNM paradigms over five days in 4 female sheep. Primary outcomes assessed proof of concept of closed-loop system function. While the bladder pressure sensor correlated only weakly to simultaneous catheter-based pressure measurement (correlation 0.26-0.89, median r = 0.52), the sensor and algorithm were accurate enough to automatically trigger SNM appropriately. The neurostimulator executed 98.5% of transmitted stimulation commands with a median latency of 72 ms (n = 1,206), suggesting that rapid decision-making and control is feasible with this platform. On average, bladder capacity increased for continuous SNM and algorithm-controlled paradigms. Some animals responded more strongly to conditional SNM, suggesting that treatment could be individualized. Future research in conditional SNM may elucidate the physiologic underpinnings of differential response and enable clinical translation.


Assuntos
Terapia por Estimulação Elétrica , Bexiga Urinária Hiperativa , Animais , Estudos de Viabilidade , Feminino , Sacro , Ovinos , Resultado do Tratamento , Bexiga Urinária Hiperativa/terapia
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 2997-3000, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30441028

RESUMO

New research and diagnosis tools are needed to continuously measure bowel state and activity. We investigated functionality of several sensors in vivo and in vitro. Five sensor types, including pressure, infrared, color, conductivity and capacitance, were tested to validate functionality inside the colon. Initial wired prototypes were tested and calibrated in benchtop testing and then inserted intraluminally into pig colon and rectum in three acute surgical procedures. The results from both benchtop and in-vivo testing correlate and indicate that pressure, conductivity, and capacitance measurements could provide information on the state of the bowel and its activity.


Assuntos
Colo , Animais , Capacitância Elétrica , Pressão , Suínos
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 1592-1595, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30440696

RESUMO

New research tools are essential to help understand the neural control of the lower urinary tract (LUT). A more nuanced understanding of the neuroanatomy of bladder function could enable new treatment options or neuroprosthesis to eliminate incontinence. Here we describe the design, prototyping and validation of a sensing mechanism for a catheter-free fluid volume estimating system for chronic neurophysiological studies of the lower urinary tract and ambulatory urodynamics. The system consists of two stimulation electrodes, one sensing anode, and a microcontroller for control and recording. The packaged device is small enough to be surgically implanted within the bladder lumen, where it does not inhibit bladder function nor inflict trauma. Benchtop evaluation of the conductance-sensing system in simulated bladder-like conditions has demonstrated that the system can predict intra-vesical fluid volume with $< 5$ mL mean error below 40mL and worst-case mean error of 13mL near full-scale volume. These results indicate that conductance-based volume sensing of the urinary bladder is a feasible method for real-time measurement.


Assuntos
Eletrodos Implantados , Bexiga Urinária , Urodinâmica , Animais , Gatos , Incontinência Urinária
4.
Artigo em Inglês | MEDLINE | ID: mdl-32064467

RESUMO

The role of peripheral nerves in regulating major organ function in health and disease is not well understood. Elucidating the relationships between biomarkers and neural activity during conditions free form anesthesia is essential to advancing future investigations of autonomic organ control and improving precision for neuromodulation treatment approaches. Here we present a simple, customizable, off-the-shelf component sensor platform to meet research needs for studying different organs under conscious, free movement. The platform consists of a small, rechargeable coin-cell battery, an energy-harvesting IC, a low-power microcontroller, a low-power pressure transducer, customizable number of electrodes with a common anode, inductive recharge input, and OOK inductive transmission. A case study demonstrating a bladder implant for long-term monitoring is presented, utilizing a novel, non-hermetic encapsulation approach. The customized platform uses two sleep modes to minimize battery loading, exhibiting a maximum time-averaged current draw of 125 micro-amps during sensing and transmission, with a quiescent current draw of 95 nano-amps into the microcontroller.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA