RESUMO
Stem growth reflects genetic and phenotypic differences within a tree species. The plant hydraulic system regulates the carbon economy, and therefore variations in growth and wood density. A whole-organism perspective, by partitioning the hydraulic system, is crucial for understanding the physical and physiological processes that coordinately mediate plant growth. The aim of this study was to determine whether the relationships and trade-offs between (i) hydraulic traits and their relative contribution to the whole-plant hydraulic system, (ii) plant water transport, (iii) CO2 assimilation, (iv) plant growth, and (v) wood density are revealed at the interclonal level within a variable population of 10 Pinus radiata (D. Don) clones for these characters. We demonstrated a strong coordination between several plant organs regarding their hydraulic efficiency. Hydraulic efficiency, gas exchange, and plant growth were intimately linked. Small reductions in stem wood density were related to a large increase in sapwood hydraulic efficiency, and thus to plant growth. However, stem growth rate was negatively related to wood density. We discuss insights explaining the relationships and trade-offs of the plant traits examined in this study. These insights provide a better understanding of the existing coordination, likely to be dependent on genetics, between the biophysical structure of wood, plant growth, hydraulic partitioning, and physiological plant functions in P. radiata.
Assuntos
Pinus , Madeira , Pinus/genética , Folhas de Planta , Árvores , ÁguaRESUMO
Investments in forestry are long-term and thus subject to numerous sources of risk. In addition to the volatility from markets, forestry investments are directly exposed to future impacts from climate change. We examined how diversification of forest management regimes can mitigate the expected risks associated with forestry activities in New Zealand based on an application of Modern Portfolio Theory. Uncertainties in the responses of Pinus radiata (D. Don) productivity to climate change, from 2050 to 2090, were simulated with 3-PG, a process-based forest growth model, based on future climate scenarios and Representative Concentration Pathways (RCPs). Future timber market scenarios were based on RCP-specific projections from the Global Timber Model and historical log grade prices. Outputs from 3-PG and the market scenarios were combined to compute annualized forestry returns for four P. radiata regimes for 2050-2090. This information was then used to construct optimal forestry portfolios that minimize investment risk for a given target return under different RCPs, forest productivity and market scenarios. While current P. radiata regimes in New Zealand are largely homogenous, our results suggest that regime diversification can mitigate future risks imposed by climate change and market uncertainty. Nevertheless, optimal portfolio compositions varied substantially across our range of scenarios and portfolio objectives. The application of this framework can help forest managers to better account for future risks in their management decisions.
Assuntos
Agricultura Florestal , Pinus , Mudança Climática , Florestas , Nova ZelândiaRESUMO
BACKGROUND: Effective matching of genotypes and environments is required for the species to reach optimal productivity and act effectively for carbon sequestration. A common garden experiment across five different environments was undertaken to assess genotype x environment interaction (GxE) of coast redwood in order to understand the performance of genotypes across environments. RESULTS: The quantitative genetic analysis discovered no GxE between investigated environments for diameter at breast height (DBH). However, no genetic component was detected at one environment possibly due to stressful conditions. The implementation of universal response function allowed for the identification of important environmental factors affecting species productivity. Additionally, this approach enabled us to predict the performance of species across the New Zealand environmental conditions. CONCLUSIONS: In combination with quantitative genetic analysis which identified genetically superior material, the URF model can directly identify the optimal geographical regions to maximize productivity. However, the finding of ideally uncorrelated climatic variables for species with narrow ecological amplitude is rather challenging, which complicates construction of informative URF model. This, along with a small number of tested environments, tended to overfit a prediction model which resulted in extreme predictions in untested environments.
Assuntos
Meio Ambiente , Interação Gene-Ambiente , Genótipo , Característica Quantitativa Herdável , Sequoia/genética , Clima , Geografia , Nova ZelândiaRESUMO
Stomatal regulation is crucial for forest species performance and survival on drought-prone sites. We investigated the regulation of root and shoot hydraulics in three Pinus radiata clones exposed to drought stress and its coordination with stomatal conductance (gs ) and leaf water potential (Ψleaf ). All clones experienced a substantial decrease in root-specific root hydraulic conductance (Kroot-r ) in response to the water stress, but leaf-specific shoot hydraulic conductance (Kshoot-l ) did not change in any of the clones. The reduction in Kroot-r caused a decrease in leaf-specific whole-plant hydraulic conductance (Kplant-l ). Among clones, the larger the decrease in Kplant-l , the more stomata closed in response to drought. Rewatering resulted in a quick recovery of Kroot-r and gs . Our results demonstrated that the reduction in Kplant-l , attributed to a down regulation of aquaporin activity in roots, was linked to the isohydric stomatal behaviour, resulting in a nearly constant Ψleaf as water stress started. We concluded that higher Kplant-l is associated with water stress resistance by sustaining a less negative Ψleaf and delaying stomatal closure.
Assuntos
Aquaporinas/fisiologia , Pinus/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/fisiologia , Raízes de Plantas/metabolismo , Estômatos de Plantas/metabolismo , Aquaporinas/metabolismo , Desidratação , Pinus/fisiologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/fisiologia , Brotos de Planta/metabolismo , Estômatos de Plantas/fisiologia , Transpiração Vegetal , Água/metabolismoRESUMO
A central challenge in community ecology is understanding the role that phenotypic variation among genotypes plays in structuring host-associated communities. While recent studies have investigated the relationship between plant genotype and the composition of soil microbial communities, the effect of genotype-by-environment interactions on the plant microbiome remains unclear. In this study, we assessed the influence of tree genetics (G), nitrogen (N) form and genotype-by-environment interaction (G x N) on the composition of the root microbiome. Rhizosphere communities (bacteria and fungi) and root-associated fungi (including ectomycorrhizal and saprotrophic guilds) were characterised in two genotypes of Pinus radiata with contrasting physiological responses to exogenous organic or inorganic N supply. Genotype-specific responses to N form influenced the composition of the root microbiome. Specifically, (1) diversity and composition of rhizosphere bacterial and root-associated fungal communities differed between genotypes that had distinct responses to N form, (2) shifts in the relative abundance of individual taxa were driven by the main effects of N form or host genotype and (3) the root microbiome of the P. radiata genotype with the most divergent growth responses to organic and inorganic N was most sensitive to differences in N form. Our results show that intraspecific variation in tree response to N form has significant consequences for the root microbiome of P. radiata, demonstrating the importance of genotype-by-environment interactions in shaping host-associated communities.
Assuntos
Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Microbiota , Nitrogênio/análise , Pinus/genética , Raízes de Plantas/microbiologia , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Fungos/classificação , Fungos/genética , Fungos/metabolismo , Genótipo , Nitrogênio/metabolismo , Pinus/metabolismo , Pinus/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismoRESUMO
BACKGROUND: Plantation forests are a nature-based solution to sequester atmospheric carbon and, therefore, mitigate anthropogenic climate change. The choice of tree species for afforestation is subject to debate within New Zealand. Two key issues are whether to use (1) exotic plantation species versus indigenous forest species and (2) fast growing short-rotation species versus slower growing species. In addition, there is a lack of scientific knowledge about the carbon sequestration capabilities of different plantation tree species, which hinders the choice of species for optimal carbon sequestration. We contribute to this discussion by simulating carbon sequestration of five plantation forest species, Pinus radiata, Pseudotsuga menziesii, Eucalyptus fastigata, Sequoia sempervirens and Podocarpus totara, across three sites and two silvicultural regimes by using the 3-PG an ecophysiological model. RESULTS: The model simulations showed that carbon sequestration potential varies among the species, sites and silvicultural regimes. Indigenous Podocarpus totara or exotic Sequoia sempervirens can provide plausible options for long-term carbon sequestration. In contrast, short term rapid carbon sequestration can be obtained by planting exotic Pinus radiata, Pseudotsuga menziesii and Eucalyptus fastigata. CONCLUSION: No single species was universally better at sequestering carbon on all sites we tested. In general, the results of this study suggest a robust framework for ranking and testing candidate afforestation species with regard to carbon sequestration potential at a given site. Hence, this study could help towards more efficient decision-making for carbon forestry.
RESUMO
The selection of drought-tolerant genotypes is globally recognized as an effective strategy to maintain the growth and survival of commercial tree species exposed to future drought periods. New genomic selection tools that reduce the time of progeny trials are required to substitute traditional tree breeding programs. We investigated the genetic variation of water stress tolerance in New Zealand-grown Pinus radiata D. Don using 622 commercially-used genotypes from 63 families. We used quantitative pedigree-based (Genomic Best Linear Unbiased Prediction or ABLUP) and genomic-based (Genomic Best Linear Unbiased Prediction or GBLUP) approaches to examine the heritability estimates associated with water stress tolerance in P. radiata. Tree seedling growth traits, foliar carbon isotope composition (δ13C), and dark-adapted chlorophyll fluorescence (Y) were monitored before, during and after 10 months of water stress. Height growth showed a constant and moderate heritability level, while the heritability estimate for diameter growth and δ13C decreased with water stress. In contrast, chlorophyll fluorescence exhibited low heritability after 5 and 10 months of water stress. The GBLUP approach provided less breeding value accuracy than ABLUP, however, the relative selection efficiency of GBLUP was greater compared with ABLUP selection techniques. Although there was no significant relationship directly between δ13C and Y, the genetic correlations were significant and stronger for GBLUP. The positive genetic correlations between δ13C and tree biomass traits under water stress indicated that intraspecific variation in δ13C was likely driven by differences in the genotype's photosynthetic capacity. The results show that foliar δ13C can predict P. radiata genotype tolerance to water stress using ABLUP and GBLUP approaches and that such approaches can provide a faster screening and selection of drought-tolerant genotypes for forestry breeding programs.
RESUMO
Variation in traits within a plant species contributes to differences in soil physicochemistry and rhizosphere microbial communities. However, how intraspecific variation in plant responses to nitrogen (N) shapes these communities remains unclear. We studied whether plant responses to organic and inorganic N forms vary among genotypes, and if these responses were associated with variation in root-associated communities. We investigated how the root microbiomes of two Pinus radiata D. Don genotypes were altered by two years of N-fertilisation in field conditions. We characterised rhizosphere bacterial and fungal communities, as well as root-associated fungal communities, of trees receiving yearly additions of NH4NO3 or L-arginine, and control trees. We also measured plant traits and rhizosphere soil physicochemical properties. Two main findings emerged: (i) N form and tree genotype affected soil physicochemical properties as well as plant measures, and these responses were associated with variation in microbial communities, and (ii) rhizosphere and root-associated communities differed in their responses to N form and host genotype. Our results suggest that N forms have different influences on N and carbon dynamics at the plant-soil interface by inducing root-mediated responses that are associated with shifts in the root microbiome such that communities more closely associated with roots are more sensitive to genotype-specific responses.