Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Heredity (Edinb) ; 132(6): 296-308, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38637723

RESUMO

Here we use population genomic data (ddRAD-Seq) and ecological niche modeling to test biogeographic hypotheses for the divergence of the island-endemic cactus species Cereus insularis Hemsl. (Cereeae; Cactaceae) from its sister species C. fernambucensis Lem. The Cereus insularis grows in the Fernando de Noronha Islands (FNI), a Neotropical archipelago located 350 km off the Brazilian Atlantic Forest (BAF) coast. Phylogeographic reconstructions support a northward expansion by the common ancestor of C. insularis and C. fernambucensis along the mainland BAF coast, with C. insularis diverging from the widespread mainland taxon C. fernambucensis after colonizing FNI in the late Pleistocene. The morphologically distinct C. insularis is monophyletic and nested within C. fernambucensis, as expected from a progenitor-derivative speciation model. We tested alternative biogeographic and demographic hypotheses for the colonization of the FNI using Approximate Bayesian Computation. We found the greatest support for a stepping-stone path that emerged during periods of decreased sea level (the "bridge" hypothesis), in congruence with historical ecological niche modeling that shows highly suitable habitats on stepping-stone islands during glacial periods. The outlier analyses reveal signatures of selection in C. insularis, suggesting a putative role of adaptation driving rapid anagenic differentiation of this species in FNI.


Assuntos
Teorema de Bayes , Cactaceae , Ilhas , Filogenia , Filogeografia , Cactaceae/genética , Brasil , Ecossistema , Genética Populacional
2.
Environ Sci Technol ; 57(31): 11499-11509, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37498168

RESUMO

The United States may produce as much as 45% of its electricity using solar energy technology by 2050, which could require more than 40,000 km2 of land to be converted to large-scale solar energy production facilities. Little is known about how such development may impact animal movement. Here, we use five spatially explicit projections of solar energy development through 2050 to assess the extent to which ground-mounted photovoltaic solar energy expansion in the continental United States may impact land-cover and alter areas important for animal movement. Our results suggest that there could be a substantial overlap between solar energy development and land important for animal movement: across projections, 7-17% of total development is expected to occur on land with high value for movement between large protected areas, while 27-33% of total development is expected to occur on land with high value for climate-change-induced migration. We also found substantial variation in the potential overlap of development and land important for movement at the state level. Solar energy development, and the policies that shape it, may align goals for biodiversity and climate change by incorporating the preservation of animal movement as a consideration in the planning process.


Assuntos
Energia Solar , Animais , Estados Unidos , Biodiversidade , Mudança Climática , Eletricidade , Previsões , Ecossistema , Conservação dos Recursos Naturais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA