Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(7): 1757-1774.e14, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33761328

RESUMO

The central pathogen-immune interface in tuberculosis is the granuloma, a complex host immune structure that dictates infection trajectory and physiology. Granuloma macrophages undergo a dramatic transition in which entire epithelial modules are induced and define granuloma architecture. In tuberculosis, relatively little is known about the host signals that trigger this transition. Using the zebrafish-Mycobacterium marinum model, we identify the basis of granuloma macrophage transformation. Single-cell RNA-sequencing analysis of zebrafish granulomas and analysis of Mycobacterium tuberculosis-infected macaques reveal that, even in the presence of robust type 1 immune responses, countervailing type 2 signals associate with macrophage epithelialization. We find that type 2 immune signaling, mediated via stat6, is absolutely required for epithelialization and granuloma formation. In mixed chimeras, stat6 acts cell autonomously within macrophages, where it is required for epithelioid transformation and incorporation into necrotic granulomas. These findings establish the signaling pathway that produces the hallmark structure of mycobacterial infection.


Assuntos
Granuloma/patologia , Imunidade/fisiologia , Infecções por Mycobacterium não Tuberculosas/patologia , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Caderinas/genética , Caderinas/metabolismo , Diferenciação Celular , Modelos Animais de Doenças , Células Epitelioides/citologia , Células Epitelioides/imunologia , Células Epitelioides/metabolismo , Granuloma/imunologia , Granuloma/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Interferon gama/metabolismo , Interleucina-12/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Infecções por Mycobacterium não Tuberculosas/imunologia , Mycobacterium marinum/isolamento & purificação , Mycobacterium marinum/fisiologia , Necrose , RNA Guia de Cinetoplastídeos/metabolismo , Receptores de Interleucina-4/antagonistas & inibidores , Receptores de Interleucina-4/genética , Receptores de Interleucina-4/metabolismo , Fator de Transcrição STAT6/antagonistas & inibidores , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/metabolismo , Transdução de Sinais , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
2.
Nat Immunol ; 24(5): 855-868, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37012543

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a global cause of death. Granuloma-associated lymphoid tissue (GrALT) correlates with protection during TB, but the mechanisms of protection are not understood. During TB, the transcription factor IRF4 in T cells but not B cells is required for the generation of the TH1 and TH17 subsets of helper T cells and follicular helper T (TFH)-like cellular responses. A population of IRF4+ T cells coexpress the transcription factor BCL6 during Mtb infection, and deletion of Bcl6 (Bcl6fl/fl) in CD4+ T cells (CD4cre) resulted in reduction of TFH-like cells, impaired localization within GrALT and increased Mtb burden. In contrast, the absence of germinal center B cells, MHC class II expression on B cells, antibody-producing plasma cells or interleukin-10-expressing B cells, did not increase Mtb susceptibility. Indeed, antigen-specific B cells enhance cytokine production and strategically localize TFH-like cells within GrALT via interactions between programmed cell death 1 (PD-1) and its ligand PD-L1 and mediate Mtb control in both mice and macaques.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Camundongos , Animais , Linfócitos T Auxiliares-Indutores , Linfócitos B , Tecido Linfoide , Centro Germinativo , Fatores de Transcrição
3.
Nat Immunol ; 23(2): 318-329, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35058616

RESUMO

Tuberculosis (TB) in humans is characterized by formation of immune-rich granulomas in infected tissues, the architecture and composition of which are thought to affect disease outcome. However, our understanding of the spatial relationships that control human granulomas is limited. Here, we used multiplexed ion beam imaging by time of flight (MIBI-TOF) to image 37 proteins in tissues from patients with active TB. We constructed a comprehensive atlas that maps 19 cell subsets across 8 spatial microenvironments. This atlas shows an IFN-γ-depleted microenvironment enriched for TGF-ß, regulatory T cells and IDO1+ PD-L1+ myeloid cells. In a further transcriptomic meta-analysis of peripheral blood from patients with TB, immunoregulatory trends mirror those identified by granuloma imaging. Notably, PD-L1 expression is associated with progression to active TB and treatment response. These data indicate that in TB granulomas, there are local spatially coordinated immunoregulatory programs with systemic manifestations that define active TB.


Assuntos
Granuloma/imunologia , Tuberculose/imunologia , Antígeno B7-H1/imunologia , Células Cultivadas , Citocinas/imunologia , Perfilação da Expressão Gênica/métodos , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Pulmão/imunologia , Mycobacterium tuberculosis/imunologia , Células Mieloides/imunologia
4.
Nat Immunol ; 22(12): 1515-1523, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34811542

RESUMO

Development of an effective tuberculosis (TB) vaccine has suffered from an incomplete understanding of the correlates of protection against Mycobacterium tuberculosis (Mtb). Intravenous (i.v.) vaccination with Bacille Calmette-Guérin (BCG) provides nearly complete protection against TB in rhesus macaques, but the antibody response it elicits remains incompletely defined. Here we show that i.v. BCG drives superior antibody responses in the plasma and the lungs of rhesus macaques compared to traditional intradermal BCG administration. While i.v. BCG broadly expands antibody titers and functions, IgM titers in the plasma and lungs of immunized macaques are among the strongest markers of reduced bacterial burden. IgM was also enriched in macaques that received protective vaccination with an attenuated strain of Mtb. Finally, an Mtb-specific IgM monoclonal antibody reduced Mtb survival in vitro. Collectively, these data highlight the potential importance of IgM responses as a marker and mediator of protection against TB.


Assuntos
Anticorpos Antibacterianos/sangue , Vacina BCG/administração & dosagem , Imunogenicidade da Vacina , Imunoglobulina M/sangue , Mycobacterium tuberculosis/imunologia , Tuberculose/prevenção & controle , Vacinação , Administração Intravenosa , Animais , Biomarcadores/sangue , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Macaca mulatta , Mycobacterium tuberculosis/patogenicidade , Fatores de Tempo , Tuberculose/imunologia , Tuberculose/microbiologia
6.
Am J Respir Crit Care Med ; 206(1): 94-104, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35412961

RESUMO

Rationale: Different Mycobacterium tuberculosis (Mtb) strains exhibit variable degrees of virulence in humans and animal models. Differing stress response strategies used by different strains of Mtb could influence virulence. Objectives: We compared the virulence of two strains of Mtb with use in animal model research: CDC1551 and Erdman. Methods: Rhesus macaques, which develop human-like tuberculosis attributes and pathology, were infected with a high dose of either strain via aerosol, and virulence was compared by bacterial burden and pathology. Measurements and Main Results: Infection with Erdman resulted in significantly shorter times to euthanasia and higher bacterial burdens and greater systemic inflammation and lung pathology relative to those infected with CDC1551. Macaques infected with Erdman also exhibited significantly higher early inflammatory myeloid cell influx to the lung, greater macrophage and T cell activity, and higher expression of lung remodeling (extracellular matrix) genes, consistent with greater pathology. Expression of NOTCH4 (neurogenic locus notch homolog 4) signaling, which is induced in response to hypoxia and promotes undifferentiated cellular state, was also higher in Erdman-infected lungs. The granulomas generated by Erdman, and not CDC1551, infection appeared to have larger regions of necrosis, which is strongly associated with hypoxia. To better understand the mechanisms of differential hypoxia induction by these strains, we subjected both to hypoxia in vitro. Erdman induced higher concentrations of DosR regulon relative to CDC1551. The DosR regulon is the global regulator of response to hypoxia in Mtb and critical for its persistence in granulomas. Conclusions: Our results show that the response to hypoxia is a critical mediator of virulence determination in Mtb, with potential impacts on bacillary persistence, reactivation, and efficiency of therapeutics.


Assuntos
Mycobacterium tuberculosis , Animais , Granuloma , Hipóxia , Inflamação/patologia , Pulmão/patologia , Macaca mulatta , Mycobacterium tuberculosis/genética , Virulência
7.
Am J Respir Crit Care Med ; 201(4): 469-477, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31647877

RESUMO

Rationale: Direct evidence for persistence of Mycobacterium tuberculosis (Mtb) during asymptomatic latent tuberculosis infection (LTBI) in humans is currently lacking. Moreover, although a 12-week regimen of once-weekly isoniazid and rifapentine (3HP) is currently recommended by the CDC as treatment for LTBI, experimental evidence for 3HP-mediated clearance of persistent Mtb infection in human lungs has not been established.Objectives: Using a nonhuman primate (NHP) model of TB, we sought to assess 3HP treatment-mediated clearance of Mtb infection in latently infected macaques.Methods: Sixteen NHPs were infected via inhalation with ∼10 cfu of Mtb CDC1551, after which asymptomatic animals were either treated with 3HP or left untreated. Pharmacokinetics of the 3HP regimen were measured. Following treatment, animals were coinfected with simian immunodeficiency virus to assess reactivation of LTBI and development of active TB disease.Measurements and Main Results: Fourteen NHPs remained free of clinical signs or microbiological evidence of active TB following infection with Mtb and were subsequently either treated with 3HP (n = 7) or left untreated (n = 7). Untreated NHPs were asymptomatic for 7 months but harbored persistent Mtb infection, as shown by reactivation of latent infection following simian immunodeficiency virus coinfection. However, none of the treated animals developed TB reactivation disease, and they remained without clinical or microbiological evidence of persistent bacilli, suggesting treatment-mediated clearance of bacteria.Conclusions:Mtb can persist in asymptomatic macaques for at least 7 months. Furthermore, 3HP treatment effectively cleared bacteria and prevented reactivation of TB in latently infected macaques.


Assuntos
Antibióticos Antituberculose/uso terapêutico , Antituberculosos/uso terapêutico , Isoniazida/uso terapêutico , Tuberculose Latente/tratamento farmacológico , Mycobacterium tuberculosis/efeitos dos fármacos , Rifampina/análogos & derivados , Tuberculose/tratamento farmacológico , Animais , Quimioterapia Combinada , Macaca , Modelos Animais , Rifampina/uso terapêutico , Resultado do Tratamento
8.
Proc Natl Acad Sci U S A ; 115(1): E62-E71, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29255022

RESUMO

Mycobacterium tuberculosis continues to cause devastating levels of mortality due to tuberculosis (TB). The failure to control TB stems from an incomplete understanding of the highly specialized strategies that M. tuberculosis utilizes to modulate host immunity and thereby persist in host lungs. Here, we show that M. tuberculosis induced the expression of indoleamine 2,3-dioxygenase (IDO), an enzyme involved in tryptophan catabolism, in macrophages and in the lungs of animals (mice and macaque) with active disease. In a macaque model of inhalation TB, suppression of IDO activity reduced bacterial burden, pathology, and clinical signs of TB disease, leading to increased host survival. This increased protection was accompanied by increased lung T cell proliferation, induction of inducible bronchus-associated lymphoid tissue and correlates of bacterial killing, reduced checkpoint signaling, and the relocation of effector T cells to the center of the granulomata. The enhanced killing of M. tuberculosis in macrophages in vivo by CD4+ T cells was also replicated in vitro, in cocultures of macaque macrophages and CD4+ T cells. Collectively, these results suggest that there exists a potential for using IDO inhibition as an effective and clinically relevant host-directed therapy for TB.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Pulmão/imunologia , Mycobacterium tuberculosis/imunologia , Triptofano/imunologia , Tuberculoma/imunologia , Tuberculose Pulmonar/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Granuloma/imunologia , Granuloma/patologia , Pulmão/patologia , Macaca mulatta , Macrófagos/imunologia , Macrófagos/patologia , Mycobacterium tuberculosis/patogenicidade , Tuberculoma/patologia , Tuberculose Pulmonar/patologia
9.
J Infect Dis ; 221(10): 1636-1646, 2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-31832640

RESUMO

Specific spatial organization of granulomas within the lungs is crucial for protective anti-tuberculosis (TB) immune responses. However, only large animal models such as macaques are thought to reproduce the morphological hallmarks of human TB granulomas. In this study, we show that infection of mice with clinical "hypervirulent" Mycobacterium tuberculosis (Mtb) HN878 induces human-like granulomas composed of bacilli-loaded macrophages surrounded by lymphocytes and organized localization of germinal centers and B-cell follicles. Infection with laboratory-adapted Mtb H37Rv resulted in granulomas that are characterized by unorganized clusters of macrophages scattered between lymphocytes. An in-depth exploration of the functions of B cells within these follicles suggested diverse roles and the activation of signaling pathways associated with antigen presentation and immune cell recruitment. These findings support the use of clinical Mtb HN878 strain for infection in mice as an appropriate model to study immune parameters associated with human TB granulomas.


Assuntos
Linfócitos B/fisiologia , Granuloma/microbiologia , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/patogenicidade , Tuberculose Pulmonar/microbiologia , Animais , Granuloma/patologia , Cadeias mu de Imunoglobulina/genética , Cadeias mu de Imunoglobulina/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Linfócitos/fisiologia , Macaca mulatta , Macrófagos/fisiologia , Camundongos Knockout , Tuberculose Pulmonar/patologia , Virulência
10.
J Infect Dis ; 220(12): 1989-1998, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31412123

RESUMO

BACKGROUND: Tuberculosis is caused by Mycobacterium tuberculosis. Recent emergence of multidrug-resistant (MDR) tuberculosis strains seriously threatens tuberculosis control and prevention. However, the role of macrophage multidrug resistance gene MDR1 on intracellular M. tuberculosis survival during antituberculosis drug treatment is not known. METHODS: We used the human monocyte-derived macrophages to study the role of M. tuberculosis in regulation of MDR1 and drug resistance. RESULTS: We discovered that M. tuberculosis infection increases the expression of macrophage MDR1 to extrude various chemical substances, including tuberculosis drugs, resulting in enhanced survival of intracellular M. tuberculosis. The pathway of regulation involves M. tuberculosis infection of macrophages and suppression of heat shock factor 1, a transcriptional regulator of MDR1 through the up-regulation of miR-431. Notably, nonpathogenic Mycobacterium smegmatis did not increase MDR1 expression, indicating active secretion of virulence factors in pathogenic M. tuberculosis contributing to this phenotype. Finally, inhibition of MDR1 improves antibiotic-mediated killing of M. tuberculosis. CONCLUSION: We report a novel finding that M. tuberculosis up-regulates MDR1 during infection, which limits the exposure of M. tuberculosis to sublethal concentrations of antimicrobials. This condition promotes M. tuberculosis survival and potentially enhances the emergence of resistant variants.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Regulação da Expressão Gênica , Macrófagos/metabolismo , Macrófagos/microbiologia , Mycobacterium tuberculosis/fisiologia , Tuberculose/genética , Tuberculose/microbiologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Macrófagos/imunologia , Camundongos , MicroRNAs/genética , Viabilidade Microbiana/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Tuberculose/metabolismo , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/metabolismo , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia , Fatores de Virulência
11.
Proc Natl Acad Sci U S A ; 113(38): E5636-44, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27601645

RESUMO

The synergy between Mycobacterium tuberculosis (Mtb) and HIV in coinfected patients has profoundly impacted global mortality because of tuberculosis (TB) and AIDS. HIV significantly increases rates of reactivation of latent TB infection (LTBI) to active disease, with the decline in CD4(+) T cells believed to be the major causality. In this study, nonhuman primates were coinfected with Mtb and simian immunodeficiency virus (SIV), recapitulating human coinfection. A majority of animals exhibited rapid reactivation of Mtb replication, progressing to disseminated TB and increased SIV-associated pathology. Although a severe loss of pulmonary CD4(+) T cells was observed in all coinfected macaques, a subpopulation of the animals was still able to prevent reactivation and maintain LTBI. Investigation of pulmonary immune responses and pathology in this cohort demonstrated that increased CD8(+) memory T-cell proliferation, higher granzyme B production, and expanded B-cell follicles correlated with protection from reactivation. Our findings reveal mechanisms that control SIV- and TB-associated pathology. These CD4-independent protective immune responses warrant further studies in HIV coinfected humans able to control their TB infection. Moreover, these findings will provide insight into natural immunity to Mtb and will guide development of novel vaccine strategies and immunotherapies.


Assuntos
Infecções por HIV/imunologia , Tuberculose Latente/imunologia , Mycobacterium tuberculosis/patogenicidade , Vírus da Imunodeficiência Símia/patogenicidade , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/microbiologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD4-Positivos/virologia , Proliferação de Células/genética , Coinfecção/virologia , HIV/imunologia , HIV/patogenicidade , Infecções por HIV/fisiopatologia , Infecções por HIV/virologia , Humanos , Memória Imunológica/genética , Tuberculose Latente/microbiologia , Tuberculose Latente/patologia , Tuberculose Latente/virologia , Ativação Linfocitária/imunologia , Macaca mulatta/imunologia , Macaca mulatta/microbiologia , Macaca mulatta/virologia , Mycobacterium tuberculosis/imunologia , Vírus da Imunodeficiência Símia/imunologia
12.
J Infect Dis ; 217(12): 1865-1874, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29432596

RESUMO

Background: Tuberculosis (TB) and human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS) profoundly affect the immune system and synergistically accelerate disease progression. It is believed that CD4+ T-cell depletion by HIV is the major cause of immunodeficiency and reactivation of latent TB. Previous studies demonstrated that blood monocyte turnover concurrent with tissue macrophage death from virus infection better predicted AIDS onset than CD4+ T-cell depletion in macaques infected with simian immunodeficiency virus (SIV). Methods: In this study, we describe the contribution of macrophages to the pathogenesis of Mycobacterium tuberculosis (Mtb)/SIV coinfection in a rhesus macaque model using in vivo BrdU labeling, immunostaining, flow cytometry, and confocal microscopy. Results: We found that increased monocyte and macrophage turnover and levels of SIV-infected lung macrophages correlated with TB reactivation. All Mtb/SIV-coinfected monkeys exhibited declines in CD4+ T cells regardless of reactivation or latency outcomes, negating lower CD4+ T-cell levels as a primary cause of Mtb reactivation. Conclusions: Results suggest that SIV-related damage to macrophages contributes to Mtb reactivation during coinfection. This also supports strategies to target lung macrophages for the treatment of TB.


Assuntos
Tuberculose Latente/imunologia , Macrófagos Alveolares/imunologia , Monócitos/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Tuberculose/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/microbiologia , Linfócitos T CD4-Positivos/virologia , Coinfecção/imunologia , Coinfecção/microbiologia , Coinfecção/virologia , Modelos Animais de Doenças , Tuberculose Latente/microbiologia , Tuberculose Latente/virologia , Depleção Linfocítica/métodos , Macaca mulatta , Macrófagos Alveolares/microbiologia , Macrófagos Alveolares/virologia , Masculino , Monócitos/microbiologia , Monócitos/virologia , Mycobacterium tuberculosis/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/microbiologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Tuberculose/microbiologia , Tuberculose/virologia , Carga Viral/imunologia
13.
Am J Pathol ; 187(12): 2811-2820, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28935575

RESUMO

Failure to replace Bacille Calmette-Guerin vaccines with efficacious anti-tuberculosis (TB) vaccines have prompted outside-the-box thinking, including pulmonary vaccination to elicit local immunity. Inhalational MtbΔsigH, a stress-response-attenuated strain, protected against lethal TB in macaques. While live mycobacterial vaccines show promising efficacy, HIV co-infection and the resulting immunodeficiency prompts safety concerns about their use. We assessed the persistence and safety of MtbΔsigH, delivered directly to the lungs, in the setting of HIV co-infection. Macaques were aerosol-vaccinated with ΔsigH and subsequently challenged with SIVmac239. Bronchoalveolar lavage and tissues were sampled for mycobacterial persistence, pathology, and immune correlates. Only 35% and 3.5% of lung samples were positive for live bacilli and granulomas, respectively. Our results therefore suggest that the nonpathologic infection of macaque lungs by ΔsigH was not reactivated by simian immunodeficiency virus, despite high viral levels and massive ablation of pulmonary CD4+ T cells. Protective pulmonary responses were retained, including vaccine-induced bronchus-associated lymphoid tissue and CD8+ effector memory T cells. Despite acute simian immunodeficiency virus infection, all animals remained asymptomatic of pulmonary TB. These findings highlight the efficacy of mucosal vaccination via this attenuated strain and will guide its further development to potentially combat TB in HIV-endemic areas. Our results also suggest that a lack of pulmonary pathology is a key correlate of the safety of live mycobacterial vaccines.


Assuntos
Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Vacinas contra a Tuberculose/farmacologia , Tuberculose/prevenção & controle , Ativação Viral/efeitos dos fármacos , Administração por Inalação , Animais , Coinfecção , HIV , Macaca mulatta , Mycobacterium tuberculosis , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/fisiologia , Tuberculose/complicações , Vacinas Atenuadas/farmacologia
14.
Am J Respir Cell Mol Biol ; 56(5): 637-647, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28135421

RESUMO

Although it is accepted that the environment within the granuloma profoundly affects Mycobacterium tuberculosis (Mtb) and infection outcome, our ability to understand Mtb gene expression in these niches has been limited. We determined intragranulomatous gene expression in human-like lung lesions derived from nonhuman primates with both active tuberculosis (ATB) and latent TB infection (LTBI). We employed a non-laser-based approach to microdissect individual lung lesions and interrogate the global transcriptome of Mtb within granulomas. Mtb genes expressed in classical granulomas with central, caseous necrosis, as well as within the caseum itself, were identified and compared with other Mtb lesions in animals with ATB (n = 7) or LTBI (n = 7). Results were validated using both an oligonucleotide approach and RT-PCR on macaque samples and by using human TB samples. We detected approximately 2,900 and 1,850 statistically significant genes in ATB and LTBI lesions, respectively (linear models for microarray analysis, Bonferroni corrected, P < 0.05). Of these genes, the expression of approximately 1,300 (ATB) and 900 (LTBI) was positively induced. We identified the induction of key regulons and compared our results to genes previously determined to be required for Mtb growth. Our results indicate pathways that Mtb uses to ensure its survival in a highly stressful environment in vivo. A large number of genes is commonly expressed in granulomas with ATB and LTBI. In addition, the enhanced expression of the dormancy survival regulon was a key feature of lesions in animals with LTBI, stressing its importance in the persistence of Mtb during the chronic phase of infection.


Assuntos
Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Granuloma/microbiologia , Viabilidade Microbiana/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/fisiologia , Anaerobiose , Animais , Perfilação da Expressão Gênica , Granuloma/patologia , Pulmão/microbiologia , Pulmão/patologia , Macaca , Reação em Cadeia da Polimerase em Tempo Real , Regulon/genética , Reprodutibilidade dos Testes , Transcriptoma/genética , Tuberculose/genética , Tuberculose/microbiologia , Tuberculose/patologia
15.
Am J Pathol ; 185(3): 820-33, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25549835

RESUMO

Mycobacterium tuberculosis (MTB) is a highly successful pathogen because of its ability to persist in human lungs for long periods of time. MTB modulates several aspects of the host immune response. Lymphocyte-activation gene 3 (LAG3) is a protein with a high affinity for the CD4 receptor and is expressed mainly by regulatory T cells with immunomodulatory functions. To understand the function of LAG3 during MTB infection, a nonhuman primate model of tuberculosis, which recapitulates key aspects of natural human infection in rhesus macaques (Macaca mulatta), was used. We show that the expression of LAG3 is highly induced in the lungs and particularly in the granulomatous lesions of macaques experimentally infected with MTB. Furthermore, we show that LAG3 expression is not induced in the lungs and lung granulomas of animals exhibiting latent tuberculosis infection. However, simian immunodeficiency virus-induced reactivation of latent tuberculosis infection results in an increased expression of LAG3 in the lungs. This response is not observed in nonhuman primates infected with non-MTB bacterial pathogens, nor with simian immunodeficiency virus alone. Our data show that LAG3 was expressed primarily on CD4(+) T cells, presumably by regulatory T cells but also by natural killer cells. The expression of LAG3 coincides with high bacterial burdens and changes in the host type 1 helper T-cell response.


Assuntos
Antígenos CD/metabolismo , Tuberculose Latente/metabolismo , Pulmão/metabolismo , Tuberculose/metabolismo , Animais , Antígenos CD/genética , Regulação da Expressão Gênica , Humanos , Tuberculose Latente/genética , Tuberculose Latente/patologia , Pulmão/patologia , Macaca mulatta , Mycobacterium tuberculosis , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Tuberculose/genética , Tuberculose/patologia , Proteína do Gene 3 de Ativação de Linfócitos
16.
J Immunol ; 193(4): 1799-811, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25024382

RESUMO

Development of a vaccine against pulmonary tuberculosis may require immunization strategies that induce a high frequency of Ag-specific CD4 and CD8 T cells in the lung. The nonhuman primate model is essential for testing such approaches because it has predictive value for how vaccines elicit responses in humans. In this study, we used an aerosol vaccination strategy to administer AERAS-402, a replication-defective recombinant adenovirus (rAd) type 35 expressing Mycobacterium tuberculosis Ags Ag85A, Ag85B, and TB10.4, in bacillus Calmette-Guérin (BCG)-primed or unprimed rhesus macaques. Immunization with BCG generated low purified protein derivative-specific CD4 T cell responses in blood and bronchoalveolar lavage. In contrast, aerosolized AERAS-402 alone or following BCG induced potent and stable Ag85A/b-specific CD4 and CD8 effector T cells in bronchoalveolar lavage that largely produced IFN-γ, as well as TNF and IL-2. Such responses induced by BCG, AERAS-402, or both failed to confer overall protection following challenge with 275 CFUs M. tuberculosis Erdman, although vaccine-induced responses associated with reduced pathology were observed in some animals. Anamnestic T cell responses to Ag85A/b were not detected in blood of immunized animals after challenge. Overall, our data suggest that a high M. tuberculosis challenge dose may be a critical factor in limiting vaccine efficacy in this model. However, the ability of aerosol rAd immunization to generate potent cellular immunity in the lung suggests that using different or more immunogens, alternative rAd serotypes with enhanced immunogenicity, and a physiological challenge dose may achieve protection against M. tuberculosis.


Assuntos
Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/imunologia , Tuberculose Pulmonar/prevenção & controle , Vacinação/métodos , Vacinas Sintéticas/imunologia , Aciltransferases/imunologia , Administração por Inalação , Animais , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunidade Celular , Interferon gama/biossíntese , Interleucina-2/biossíntese , Pulmão/imunologia , Pulmão/microbiologia , Macaca mulatta , Masculino , Mycobacterium bovis/imunologia , Mycobacterium tuberculosis/virologia , Vacinas contra a Tuberculose/administração & dosagem , Tuberculose Pulmonar/imunologia , Fator de Necrose Tumoral alfa/biossíntese , Vacinas de DNA , Vacinas Sintéticas/administração & dosagem
17.
Am J Respir Crit Care Med ; 191(10): 1185-96, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25730547

RESUMO

RATIONALE: Hypoxia promotes dormancy by causing physiologic changes to actively replicating Mycobacterium tuberculosis. DosR controls the response of M. tuberculosis to hypoxia. OBJECTIVES: To understand DosR's contribution in the persistence of M. tuberculosis, we compared the phenotype of various DosR regulon mutants and a complemented strain to M. tuberculosis in macaques, which faithfully model M. tuberculosis infection. METHODS: We measured clinical and microbiologic correlates of infection with M. tuberculosis relative to mutant/complemented strains in the DosR regulon, studied lung pathology and hypoxia, and compared immune responses in lung using transcriptomics and flow cytometry. MEASUREMENTS AND MAIN RESULTS: Despite being able to replicate initially, mutants in DosR regulon failed to persist or cause disease. On the contrary, M. tuberculosis and a complemented strain were able to establish infection and tuberculosis. The attenuation of pathogenesis in animals infected with the mutants coincided with the appearance of a Th1 response and organization of hypoxic lesions wherein M. tuberculosis expressed dosR. The lungs of animals infected with the mutants (but not the complemented strain) exhibited early transcriptional signatures of T-cell recruitment, activation, and proliferation associated with an increase of T cells expressing homing and proliferation markers. CONCLUSIONS: Delayed adaptive responses, a hallmark of M. tuberculosis infection, not only lead to persistence but also interfere with the development of effective antituberculosis vaccines. The DosR regulon therefore modulates both the magnitude and the timing of adaptive immune responses in response to hypoxia in vivo, resulting in persistent infection. Hence, DosR regulates key aspects of the M. tuberculosis life cycle and limits lung pathology.


Assuntos
Proteínas de Bactérias/genética , Hipóxia/metabolismo , Mycobacterium tuberculosis/genética , Proteínas Quinases/genética , Regulon/genética , Tuberculose/genética , Animais , Proteínas de Bactérias/imunologia , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Macaca mulatta , Mycobacterium tuberculosis/imunologia , Proteínas Quinases/imunologia , Regulon/imunologia , Linfócitos T/imunologia , Tuberculose/imunologia , Tuberculose/prevenção & controle
18.
Am J Respir Cell Mol Biol ; 52(6): 708-16, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25322074

RESUMO

Mycobacterium tuberculosis (Mtb) must counter hypoxia within granulomas to persist. DosR, in concert with sensor kinases DosS and DosT, regulates the response to hypoxia. Yet Mtb lacking functional DosR colonize the lungs of C57Bl/6 mice, presumably owing to the lack of organized lesions with sufficient hypoxia in that model. We compared the phenotype of the Δ-dosR, Δ-dosS, and Δ-dosT mutants to Mtb using C3HeB/FeJ mice, an alternate mouse model where lesions develop hypoxia. C3HeB/FeJ mice were infected via aerosol. The progression of infection was analyzed by tissue bacterial burden and histopathology. A measure of the comparative global immune responses was also analyzed. Although Δ-dosR and Δ-dosT grew comparably to wild-type Mtb, Δ-dosS exhibited a significant defect in bacterial burden and pathology in vivo, accompanied by ablated proinflammatory response. Δ-dosS retained the ability to induce DosR. The Δ-dosS mutant was also attenuated in murine macrophages ex vivo, with evidence of reduced expression of the proinflammatory signature. Our results show that DosS, but not DosR and DosT, is required by Mtb to survive in C3HeB/FeJ mice. The attenuation of Δ-dosS is not due to its inability to induce the DosR regulon, nor is it a result of the accumulation of hypoxia. That the in vivo growth restriction of Δ-dosS could be mimicked ex vivo suggested sensitivity to macrophage oxidative burst. Anoxic caseous centers within tuberculosis lesions eventually progress to cavities. Our results provide greater insight into the molecular mechanisms of Mtb persistence within host lungs.


Assuntos
Proteínas de Bactérias/genética , Granuloma do Sistema Respiratório/microbiologia , Mycobacterium tuberculosis/patogenicidade , Protamina Quinase/genética , Tuberculose Pulmonar/microbiologia , Animais , Proteínas de Bactérias/metabolismo , Hipóxia Celular , Células Cultivadas , Regulação Bacteriana da Expressão Gênica , Macrófagos/microbiologia , Masculino , Camundongos Endogâmicos C3H , Viabilidade Microbiana , Mycobacterium tuberculosis/genética , Protamina Quinase/metabolismo , Regulon , Virulência
19.
Am J Respir Crit Care Med ; 188(9): 1137-46, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24047412

RESUMO

RATIONALE: A hallmark of pulmonary tuberculosis (TB) is the formation of granulomas. However, the immune factors that drive the formation of a protective granuloma during latent TB, and the factors that drive the formation of inflammatory granulomas during active TB, are not well defined. OBJECTIVES: The objective of this study was to identify the underlying immune mechanisms involved in formation of inflammatory granulomas seen during active TB. METHODS: The immune mediators involved in inflammatory granuloma formation during TB were assessed using human samples and experimental models of Mycobacterium tuberculosis infection, using molecular and immunologic techniques. MEASUREMENTS AND MAIN RESULTS: We demonstrate that in human patients with active TB and in nonhuman primate models of M. tuberculosis infection, neutrophils producing S100 proteins are dominant within the inflammatory lung granulomas seen during active TB. Using the mouse model of TB, we demonstrate that the exacerbated lung inflammation seen as a result of neutrophilic accumulation is dependent on S100A8/A9 proteins. S100A8/A9 proteins promote neutrophil accumulation by inducing production of proinflammatory chemokines and cytokines, and influencing leukocyte trafficking. Importantly, serum levels of S100A8/A9 proteins along with neutrophil-associated chemokines, such as keratinocyte chemoattractant, can be used as potential surrogate biomarkers to assess lung inflammation and disease severity in human TB. CONCLUSIONS: Our results thus show a major pathologic role for S100A8/A9 proteins in mediating neutrophil accumulation and inflammation associated with TB. Thus, targeting specific molecules, such as S100A8/A9 proteins, has the potential to decrease lung tissue damage without impacting protective immunity against TB.


Assuntos
Calgranulina A/imunologia , Calgranulina B/imunologia , Granuloma do Sistema Respiratório/imunologia , Mediadores da Inflamação/imunologia , Neutrófilos/imunologia , Tuberculose Pulmonar/imunologia , Animais , Quimiocinas/imunologia , Fatores Quimiotáticos/imunologia , Citocinas/imunologia , Modelos Animais de Doenças , Humanos , Macaca mulatta , Camundongos , Camundongos Endogâmicos C57BL
20.
J Infect Dis ; 207(8): 1253-61, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23359591

RESUMO

BACKGROUND: Mycobacterium tuberculosis can grow in the hostile intracellular environment of macrophages by actively evading macrophage-associated antibacterial activities. The stress response factor SigH contributes to this process by modulating ß-chemokine and interleukin 6 (Il6) expression. Hence, Il6 is of critical importance for acquired immunity against M. tuberculosis infection. Here, we attempted to better characterize the role of Il6 in the immune response to M. tuberculosis infection. METHODS: A small interfering RNA-based approach was used to silence expression of the Il6 transcript in host macrophages infected with a wild-type strain of M. tuberculosis or an attenuated mutant strain of M. tuberculosis (Mtb:Δ-sigH). The outcome was measured by the analysis of bacterial burden and transcriptome-wide analysis of host gene expression. Transcriptome results were confirmed via quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. RESULTS: Wild type and Mtb:Δ-sigH infection of host macrophages in which Il6 had been silenced resulted in increased expression of interferon-inducible genes, especially those involved in type I interferon signaling. The expression of Ly-6 genes was significantly higher in cells infected with Mtb:Δ-sigH, compared with those infected with the wild-type strain (P < .05). CONCLUSIONS: M. tuberculosis regulates host Il6 production to inhibit type I interferon signaling and, consequently, disease progression. Mtb:Δ-sigH is associated with delayed activation of macrophages, compared with the wild-type strain, and with delayed inflammatory stimuli as consequence. These findings have important implications for improving understanding of the mechanisms behind M. tuberculosis virulence and pathogenesis and provide an initial road map to further investigate the mechanisms that may account for the deleterious effects of type I interferons in M. tuberculosis infection.


Assuntos
Imunidade Inata , Interleucina-6/imunologia , Macrófagos/microbiologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Animais , Carga Bacteriana , Quimiocina CXCL2/imunologia , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica , Inativação Gênica , Inflamação/imunologia , Inflamação/microbiologia , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Interleucina-6/genética , Ativação de Macrófagos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/patogenicidade , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Transcriptoma , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA