Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Tech Coloproctol ; 23(10): 981-985, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31617034

RESUMO

BACKGROUND: An anastomotic leak is the most dreaded complication after low anterior resection. Adipose tissue grafting may induce healing in a persistent anastomotic defect. The aim of the present study was to report retrospectively reviewed outcomes for a series of patients who were managed with heterotopic grafted adipose tissue to facilitate anastomotic healing. METHODS: Patients with anastomotic leakage after low anterior resection sequentially treated with grafting of adipose tissue were included in the study. All patients had pelvic radiation during treatment and had a diverting ileostomy in situ. The cohort had a persistent defect despite being treated with available modalities such as suture repair, fibrin glue, Endo-Sponge and surgical debridement. The outcomes were reviewed and reported. RESULTS: There were 11 patients (8 males and 3 females) with a median age of 54 years (range 33-72 years). Five patients experienced complete healing of the anastomotic defect with successful reversal of the diverting ileostomy. The anastomotic defect of one other patient in the series appeared to have healed and hence his diverting ileostomy was reversed. However, he presented with a recurrent leak, which ultimately necessitated an abdominoperineal resection. Another patient had a persistent defect after an attempt at adipose tissue grafting and opted to proceed with a takedown of the anastomosis. In the remaining four patients, the outcome after adipose tissue grafting remains unknown, as two patients succumbed to metastatic disease, one was lost to follow-up and the remaining patient developed a recurrence which required pelvic exenteration. Procedural associated morbidity occurred in one patient who developed fat embolism, which was treated expectantly. CONCLUSIONS: Adipose tissue grafting is safe and feasible, though its effectiveness remains uncertain. It may be useful selectively in the management of persistent anastomotic leak after radiation and low anterior resection.


Assuntos
Tecido Adiposo/transplante , Fístula Anastomótica/cirurgia , Ileostomia/efeitos adversos , Protectomia/efeitos adversos , Reto/cirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Fístula Anastomótica/etiologia , Neoplasias Colorretais/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento
2.
Int J Obes (Lond) ; 40(10): 1582-1590, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27200507

RESUMO

BACKGROUND/OBJECTIVES: High-fat diet (HFD)-induced obesity has significant negative effects on lymphatic function, but it remains unclear whether this is a direct effect of HFD or secondary to adipose tissue deposition. METHODS: We compared the effects of HFD on obesity-prone and obesity-resistant mice and analyzed lymphatic function in vivo and in vitro. RESULTS: Only obesity-prone mice had impaired lymphatic function, increased perilymphatic inflammation and accumulation of lipid droplets surrounding their lymphatic endothelial cells (LECs). LECs isolated from obesity-prone mice, in contrast to obesity-resistant animals, had decreased expression of VEGFR-3 and Prox1. Exposure of LECs to a long-chain free fatty acid increased cellular apoptosis and decreased VEGFR-3 expression, while inhibition of intracellular inhibitors of VEGFR-3 signaling pathways increased cellular viability. CONCLUSIONS: Collectively, our studies suggest that HFD-induced obesity decreases lymphatic function by increasing perilymphatic inflammation and altering LEC gene expression. Reversal of diminished VEGFR-3 signaling may rescue this phenotype and improve lymphatic function.


Assuntos
Dieta Hiperlipídica , Vasos Linfáticos/fisiopatologia , Obesidade/fisiopatologia , Tecido Adiposo/metabolismo , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Inflamação , Vasos Linfáticos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/patologia , Proteínas Supressoras de Tumor/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
3.
J Plast Reconstr Aesthet Surg ; 70(10): 1369-1376, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28602267

RESUMO

BACKGROUND: Approximately one-third of women diagnosed with breast cancer undergo mastectomy with subsequent implant-based or autogenous tissue-based reconstruction. Potential complications include infection, capsular contracture, and leak or rupture of implants with necessity for explantation. Skin rashes are infrequently described complications of patients who undergo mastectomy with or without reconstruction. METHODS: A retrospective analysis of breast cancer patients referred to the Dermatology Service for diagnosis and management of a rash post-mastectomy and expander or implant placement or transverse rectus abdominis myocutaneous (TRAM) flap reconstruction was performed. Parameters studied included reconstruction types, time to onset, clinical presentation, associated symptoms, results of microbiologic studies, management, and outcome. RESULTS: We describe 21 patients who developed a rash on the skin overlying a breast reconstruction. Average time to onset was 25.7 months after expander placement or TRAM flap reconstruction. Clinical presentations included macules and papules or scaly, erythematous patches and plaques. Five patients had cultures of the rash, which were all negative. Skin biopsy was relatively contraindicated in areas of skin tension, and was reserved for non-responding eruptions. Treatments included topical corticosteroids and topical antibiotics, which resulted in complete or partial responses in all patients with documented follow-ups. CONCLUSION: Our findings suggest that tension and post-surgical factors play a causal role in this hitherto undescribed entity: "post-reconstruction dermatitis of the breast." This is a manageable condition that develops weeks to years following breast reconstruction. Topical corticosteroids and antibiotics result in restoration of skin barrier integrity and decreased secondary infection.


Assuntos
Antibacterianos/administração & dosagem , Implante Mamário/efeitos adversos , Glucocorticoides/administração & dosagem , Mamoplastia , Complicações Pós-Operatórias , Retalhos Cirúrgicos/efeitos adversos , Administração Tópica , Adulto , Neoplasias da Mama/cirurgia , Dermatite/diagnóstico , Dermatite/tratamento farmacológico , Dermatite/etiologia , Feminino , Humanos , Mamoplastia/efeitos adversos , Mamoplastia/métodos , Mastectomia/métodos , Pessoa de Meia-Idade , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/tratamento farmacológico , Estudos Retrospectivos , Resultado do Tratamento , Estados Unidos
4.
J Bone Miner Res ; 15(12): 2413-30, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11127206

RESUMO

Despite its prevalence, the etiopathogenesis of craniosynostosis is poorly understood. To better understand the biomolecular events that occur when normal craniofacial growth development goes awry, we must first investigate the mechanisms of normal suture fusion. Murine models in which the posterior frontal (PF) suture undergoes programmed sutural fusion shortly after birth provide an ideal model to study these mechanisms. In previous studies, our group and others have shown that sutural fate (i.e., fusion vs. patency) is regulated by the dura mater (DM) directly underlying a cranial suture. These studies have led to the hypothesis that calvarial DM is regionally differentiated and that this differentiation guides the development of the overlying suture. To test this hypothesis, we evaluated the messenger RNA (mRNA) expression of osteogenic cytokines (transforming growth factor beta1 [TGF-beta1] and TGF-beta3) and bone-associated extracellular matrix (ECM) molecules (collagen I, collagen III, osteocalcin, and alkaline phosphatase) in freshly isolated, rat dural tissues associated with the PF (programmed to fuse) or sagittal (SAG; remains patent) sutures before histological evidence of sutural fusion (postnatal day 6 [N6]). In addition, osteocalcin protein expression and cellular proliferation were localized using immunohistochemical staining and 5-bromo-2'deoxyuridine (BrdU) incorporation, respectively. We showed that the expression of osteogenic cytokines and bone-associated ECM molecules is potently up-regulated in the DM associated with the PF suture. In addition, we showed that cellular proliferation in the DM associated with the fusing PF suture is significantly less than that found in the patent SAG suture just before the initiation of sutural fusion N6. Interestingly, no differences in cellular proliferation rates were noted in younger animals (embryonic day 18 [E18] and N2). To further analyze regional differentiation of cranial suture-associated dural cells, we established dural cell cultures from fusing and patent rat cranial sutures in N6 rats and evaluated the expression of osteogenic cytokines (TGF-beta1 and fibroblast growth factor 2 [FGF-2]) and collagen I. In addition, we analyzed cellular production of proliferating cell nuclear antigen (PCNA). These studies confirmed our in vivo findings and showed that dural cell cultures derived from the fusing PF suture expressed significantly greater amounts of TGF-beta1, FGF-2, and collagen I. In addition, similar to our in vivo findings, we showed that PF suture-derived dural cells produced significantly less PCNA than SAG suture-derived dural cells. Finally, coculture of dural cells with fetal rat calvarial osteoblastic cells (FRCs) revealed a statistically significant increase in proliferation (*p < 0.001) in FRCs cocultured with SAG suture-derived dural cells as compared with FRCs cocultured alone or with PF suture-derived dural cells. Taken together, these data strongly support the hypothesis that the calvarial DM is regionally differentiated resulting in the up-regulation of osteogenic cytokines and bone ECM molecules in the dural tissues underlying fusing but not patent cranial sutures. Alterations in cytokine expression may govern osteoblastic differentiation and ECM molecule deposition, thus regulating sutural fate. Elucidation of the biomolecular events that occur before normal cranial suture fusion in the rat may increase our understanding of the events that lead to premature cranial suture fusion.


Assuntos
Suturas Cranianas/citologia , Suturas Cranianas/metabolismo , Citocinas/metabolismo , Dura-Máter/citologia , Dura-Máter/metabolismo , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fosfatase Alcalina/metabolismo , Animais , Northern Blotting , Diferenciação Celular , Divisão Celular , Células Cultivadas , Colágeno/metabolismo , Suturas Cranianas/crescimento & desenvolvimento , Dura-Máter/crescimento & desenvolvimento , Fator 2 de Crescimento de Fibroblastos/metabolismo , Imuno-Histoquímica , Técnicas In Vitro , Osteocalcina/metabolismo , Reação em Cadeia da Polimerase , Antígeno Nuclear de Célula em Proliferação/metabolismo , RNA Mensageiro/metabolismo , Ratos , Fator de Crescimento Transformador beta/metabolismo
5.
J Bone Miner Res ; 14(8): 1290-301, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10457261

RESUMO

Modulation of biological pathways governing osteogenesis may accelerate osseous regeneration and reduce the incidence of complications associated with fracture healing. Transforming growth factor beta1 (TGF-beta1) is a potent growth factor implicated in the regulation of osteogenesis and fracture repair. The use of recombinant proteins, however, has significant disadvantages and has limited the clinical utility of these molecules. Targeted gene therapy using adenovirus vectors is a technique that may circumvent difficulties associated with growth factor delivery. In this study, we investigate the efficacy of replication-deficient adenoviruses containing the human TGF-beta1 and the bacterial lacZ genes in transfecting osteoblasts in vitro and osseous tissues in vivo. We demonstrate that adenovirus-mediated gene therapy efficiently transfects osteoblasts in vitro with the TGF-beta1 virus causing a marked up-regulation in TGF-beta1 mRNA expression even 7 days after transfection. Increased TGF-beta1 mRNA expression was efficiently translated into protein production and resulted in approximately a 46-fold increase in TGF-beta1 synthesis as compared with control cells (vehicle- or B-galactosidase-transfected). Moreover, virally produced TGF-beta1 was functionally active and regulated the expression of collagen IalphaI (5-fold increase) and the vascular endothelial growth factor (2.5-fold increase). Using an adenovirus vector encoding the Escherichia coli LacZ gene, we demonstrated that adenovirus-mediated gene transfer efficiently transfects osteoblasts and osteocytes in vivo and that transfection can be performed by a simple percutaneous injection. Finally, we show that delivery of the hTGF-beta1 gene to osseous tissues in vivo results in significant changes in the epiphyseal plate primarily as a result of increased thickness of the provisional calcification zone.


Assuntos
Adenoviridae/genética , Terapia Genética , Vetores Genéticos , Osteoblastos/fisiologia , Fator de Crescimento Transformador beta/uso terapêutico , Regeneração Óssea/fisiologia , Células Cultivadas , Fatores de Crescimento Endotelial/biossíntese , Consolidação da Fratura , Humanos , Óperon Lac , Linfocinas/biossíntese , Osteogênese/fisiologia , Reação em Cadeia da Polimerase , Transfecção , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular , beta-Galactosidase/metabolismo
6.
Endocrinology ; 141(6): 2075-83, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10830293

RESUMO

Normal bone growth and repair is dependent on angiogenesis. Fibroblast growth factor-2 (FGF-2), vascular endothelial growth factor (VEGF), and transforming growth factor-beta (TGFbeta) have all been implicated in the related processes of angiogenesis, growth, development, and repair. The purpose of this study was to investigate the relationships between FGF-2 and both VEGF and TGFbeta in nonimmortalized and clonal osteoblastic cells. Northern blot analysis revealed 6-fold peak increases in VEGF mRNA at 6 h in fetal rat calvarial cells and MC3T3-E1 osteoblastic cells after stimulation with FGF-2. Actinomycin D inhibited these increases in VEGF mRNA, whereas cycloheximide did not. The stability ofVEGF mRNA was not increased after FGF-2 treatment. Furthermore, FGF-2 induced dose-dependent increases in VEGF protein levels (P < 0.01). Although in MC3T3-E1 cells, TGFbeta1 stimulates a 6-fold peak increase in VEGF mRNA after 3 h of stimulation, we found that both TGFbeta2 and TGFbeta3 yielded 2- to 3-fold peak increases in VEGF mRNA levels noted after 6 h of stimulation. Similarly, both TGFbeta2 and TGFbeta3 dose dependently increased VEGF protein production. To determine whether FGF-2-induced increases in VEGF mRNA may have occurred independently of TGFbeta, we disrupted TGFbeta signal transduction (using adenovirus encoding a truncated form of TGFbeta receptor II), which attenuated TGFbeta1 induction of VEGF mRNA, but did not impede FGF-2 induction ofVEGF mRNA. In summary, FGF-2-induced VEGF expression by osteoblastic cells is a dose-dependent event that may be independent of concomitant FGF-2-induced modulation of TGFbeta activity.


Assuntos
Fatores de Crescimento Endotelial/genética , Fator 2 de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Linfocinas/genética , Osteoblastos/metabolismo , Animais , Northern Blotting , Osso e Ossos/embriologia , Linhagem Celular , Cicloeximida/farmacologia , Dactinomicina/farmacologia , Fatores de Crescimento Endotelial/análise , Fatores de Crescimento Endotelial/metabolismo , Feminino , Linfocinas/análise , Linfocinas/metabolismo , Inibidores da Síntese de Ácido Nucleico/farmacologia , Gravidez , Inibidores da Síntese de Proteínas/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Crescimento Transformador beta/farmacologia , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular
7.
Psychopharmacology (Berl) ; 101(1): 118-25, 1990.
Artigo em Inglês | MEDLINE | ID: mdl-2343072

RESUMO

Two experiments were conducted to investigate the possible role of endogenous opioid peptides in the regulation of masculine sexual reward. In experiment 1 sexually experienced male rats, which had recently been castrated or left gonadally intact, were allowed to mate with an oestrous female in an initially "non-preferred" chamber of a test apparatus. On alternate days these males were placed alone in the initially "preferred" chamber of the same apparatus. After eight such conditioning sessions both intact and castrated males had acquired a conditioned place preference (CPP) for the initially "non-preferred" chamber whereas control males, which were never given access to an oestrous female, showed no evidence of a significant shift in their preference for either chamber. Administration of the opioid receptor antagonist, naloxone (1 or 5 mg/kg, SC) prior to each conditioning session had no significant influence on the acquisition of a CPP for an oestrous female. By contrast, in experiment 2 naloxone treatment significantly attenuated the expression of a previously established CPP for an oestrous female in both gonadally intact and castrated males. The results suggest that opioid components of neural reward circuits are normally activated in the male rat by conditioned incentive stimuli, but not by the primary rewarding stimuli associated with access to and mating with an oestrous female.


Assuntos
Comportamento Animal/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Naloxona/farmacologia , Animais , Estro/fisiologia , Feminino , Masculino , Ratos
8.
Plast Reconstr Surg ; 102(6): 1805-17; discussion 1818-20, 1998 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9810974

RESUMO

Craniosynostosis is a common disorder with an unknown etiology. Recent genetic mapping studies have demonstrated a strong linkage between several familial craniosynostotic syndromes and mutations in fibroblast growth factor receptor 1 (FGF-R1) and 2 (FGF-R2). The purpose of this experiment was to investigate by immunohistochemistry the protein production of these receptors as well as of their most prevalent ligand, basic fibroblast growth factor (bFGF), before, during, and after sutural fusion in rat cranial sutures. The posterior frontal (normally fuses between postnatal days 12 and 22) and sagittal (remains patent) sutures of embryonic day 20 and neonatal days 6, 12, 17, 22, and 62 (n = 3 per group) were harvested, fixed, and decalcified. Five-micrometer sections were stained with polyclonal antibodies against bFGF, FGF-R1, and FGF-R2, and patterns of immunohistochemical staining were assessed by independent reviewers. Our results indicate that increased bFGF production correlates temporally with suture fusion, with increased staining of the dura underneath the fusing suture prior to fusion followed by increased staining within osteoblasts and sutural cells during fusion. FGF-R1 and, to a lesser extent FGF-R2 immunostaining revealed a different pattern of localization with increased immunostaining within the patent sagittal suture at these time points. These results implicate bFGF in the regulation of sutural fusion and may imply autoregulatory mechanisms in fibroblast growth factor receptor expression.


Assuntos
Suturas Cranianas/metabolismo , Fator 2 de Crescimento de Fibroblastos/análise , Fatores de Crescimento de Fibroblastos/análise , Receptores Proteína Tirosina Quinases/análise , Receptores de Fatores de Crescimento de Fibroblastos/análise , Animais , Animais Recém-Nascidos , Embrião de Mamíferos , Imuno-Histoquímica , Ratos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos
9.
Plast Reconstr Surg ; 106(6): 1336-9, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11083565

RESUMO

A patient with arteriovenous malformations of the volar forearm and hand arising from a persistent median artery with an associated bifid median nerve is presented. Surgeons should be aware of high median nerve bifurcations, particularly when a persistent median artery is identified, and should remember that additional structures that can lead to nerve compression may be present in the carpal tunnel. Specifically, more than one median nerve may need to be identified and protected in such cases.


Assuntos
Malformações Arteriovenosas/complicações , Malformações Arteriovenosas/cirurgia , Nervo Mediano/anormalidades , Punho/irrigação sanguínea , Criança , Humanos , Masculino
10.
Plast Reconstr Surg ; 107(7): 1812-27, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11391207

RESUMO

Distraction osteogenesis is becoming the treatment of choice for the surgical correction of hypoplasias of the craniofacial skeleton. Its principle is based on the studies of Ilizarov, who showed that osteogenesis can be induced if bone is expanded (distracted) along its long axis at the rate of 1 mm per day. This process induces new bone formation along the vector of pull without requiring the use of a bone graft. The technique also provides the added benefit of expanding the overlying soft tissues, which are frequently deficient in these patients. This article reviews the authors' 11-year clinical and research experience with mandibular distraction osteogenesis. It highlights the indications and contraindications of the technique and emphasizes the critical role that basic science research has played in its evolution.


Assuntos
Mandíbula/cirurgia , Osteogênese por Distração , Envelhecimento/fisiologia , Animais , Regulação para Baixo , Matriz Extracelular/metabolismo , Humanos , Côndilo Mandibular/cirurgia , Osteogênese , Osteogênese por Distração/métodos , Articulação Temporomandibular , Fator de Crescimento Transformador beta/metabolismo , Zigoma/cirurgia
11.
Plast Reconstr Surg ; 102(6): 2022-32, 1998 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9811000

RESUMO

The application of distraction osteogenesis to craniofacial surgery has altered the approach and treatment of congenital and acquired craniofacial defects. Although the histologic and ultrastructural changes associated with distraction osteogenesis have been described extensively, relatively little is known about the molecular regulation of this process. The elucidation of the molecular mechanisms of distraction osteogenesis has important clinical implications because it may facilitate the use of recombinant proteins or gene therapy to accelerate bone regeneration. Molecular analysis of distraction osteogenesis has been hindered by the use of large animal models in which only limited genetic information is available. In this study, a rat model of mandibular distraction osteogenesis is described. This report includes a pilot study (n = 50) to develop an appropriate distraction device and to determine the optimal placement of the osteotomy. The study subsequently included 80 animals, 35 of which were distracted at a rate of 0.25 mm per day for 6 days (1.5 mm total) and 35 that were distracted at a rate of 0.25 mm twice per day (3.0 mm total). These animals were killed at various time points (after latency and during the distraction and consolidation periods) and displayed histologic and radiographic findings of membranous bone distraction osteogenesis that were consistent with those in large ,animal and clinical models. In addition, five animals each were acutely lengthened 1.5 mm and 3.0 mm and demonstrated a fibrous nonunion. Furthermore, the utility of this model is demonstrated in the analysis of the molecular mechanisms of distraction osteogenesis by applying the polymerase chain reaction to total cellular RNA isolated from normal and distracted rat mandibles. In conclusion, it is believed that the rat model of distraction osteogenesis has significant advantages over traditional models, including decreased costs and facilitation of molecular analysis.


Assuntos
Mandíbula/fisiologia , Osteogênese por Distração , Animais , Regeneração Óssea/fisiologia , Masculino , Modelos Biológicos , Reação em Cadeia da Polimerase , RNA/análise , Radiografia , Ratos , Ratos Sprague-Dawley , Crânio/diagnóstico por imagem , Fatores de Tempo
12.
Plast Reconstr Surg ; 105(6): 2028-38, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10839400

RESUMO

Poorly healing mandibular fractures and osteotomies can be troublesome complications of craniomaxillofacial trauma and reconstructive surgery. Gene therapy may offer ways of enhancing bone formation by altering the expression of desired growth factors and extracellular matrix molecules. The elucidation of suitable candidate genes for therapeutic intervention necessitates investigation of the endogenously expressed patterns of growth factors during normal (i.e., successful) fracture repair. Transforming growth factor beta1 (TGF-beta1), its receptor (Tbeta-RII), and the extracellular matrix proteins osteocalcin and type I collagen are thought to be important in long-bone (endochondral) formation, fracture healing, and osteoblast proliferation. However, the spatial and temporal expression patterns of these molecules during membranous bone repair remain unknown. In this study, 24 adult rats underwent mandibular osteotomy with rigid external fixation. In addition, four identically treated rats that underwent sham operation (i.e., no osteotomy) were used as controls. Four experimental animals were then killed at each time point (3, 5, 7, 9, 23, and 37 days after the procedure) to examine gene expression of TGF-beta1 and Tbeta-RII, osteocalcin, and type I collagen. Northern blot analysis was used to compare gene expression of these molecules in experimental animals with that in control animals (i.e., nonosteotomized; n = 4). In addition, TGF-beta1 and T-RII proteins were immunolocalized in an additional group of nine animals killed on postoperative days 3, 7, and 37. The results of Northern blot analysis demonstrated a moderate increase (1.7 times) in TGF-beta1 expression 7 days postoperatively; TGF-beta1 expression returned thereafter to near baseline levels. Tbeta-RII mRNA expression was downregulated shortly after osteotomy but then increased, reaching a peak of 1.8 times the baseline level on postoperative day 9. Osteocalcin mRNA expression was dramatically downregulated shortly after osteotomy and remained low during the early phases of fracture repair. Osteocalcin expression trended slowly upward as healing continued, reaching peak expression by day 37 (1.7 times the control level). In contrast, collagen type IalphaI mRNA expression was acutely downregulated shortly after osteotomy, peaked on postoperative days 5, and then decreased at later time points. Histologic samples from animals killed 3 days after osteotomy demonstrated TGF-beta1 protein localized to inflammatory cells and extracellular matrix within the fracture gap, periosteum, and peripheral soft tissues. On postoperative day 7, TGF-beta1 staining was predominantly localized to the osteotomized bone edges, periosteum, surrounding soft tissues, and residual inflammatory cells. By postoperative day 37, complete bony healing was observed, and TGF-beta1 staining was localized to the newly formed bone matrix and areas of remodeling. On postoperative day 3, Tbeta-RII immunostaining localized to inflammatory cells within the fracture gap, periosteal cells, and surrounding soft tissues. By day 7, Tbeta-RII staining localized to osteoblasts of the fracture gap but was most intense within osteoblasts and mesenchymal cells of the osteotomized bone edges. On postoperative day 37, Tbeta-RII protein was seen in osteocytes, osteoblasts, and the newly formed periosteum in the remodeling bone. These observations agree with those of previous in vivo studies of endochondral bone formation, growth, and healing. In addition, these results implicate TGF-beta1 biological activity in the regulation of osteoblast migration, differentiation, and proliferation during mandibular fracture repair. Furthermore, comparison of these data with gene expression during mandibular distraction osteogenesis may provide useful insights into the treatment of poorly healing fractures because distraction osteogenesis has been shown to be effective in the management of these difficult clinical cases.


Assuntos
Osso e Ossos/fisiologia , Proteínas da Matriz Extracelular/genética , Expressão Gênica , Osteotomia , Receptores de Fatores de Crescimento Transformadores beta/genética , Fator de Crescimento Transformador beta/genética , Cicatrização/genética , Animais , Northern Blotting , Colágeno/análise , Colágeno/genética , Proteínas da Matriz Extracelular/análise , Consolidação da Fratura/genética , Consolidação da Fratura/fisiologia , Imuno-Histoquímica , Mandíbula/cirurgia , Osteocalcina/análise , Osteocalcina/genética , RNA Mensageiro/análise , Ratos , Receptores de Fatores de Crescimento Transformadores beta/análise , Fator de Crescimento Transformador beta/análise
13.
Plast Reconstr Surg ; 104(3): 738-47, 1999 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10456527

RESUMO

Numerous studies have demonstrated the critical role of angiogenesis for successful osteogenesis during endochondral ossification and fracture repair. Vascular endothelial growth factor (VEGF), a potent endothelial cell-specific cytokine, has been shown to be mitogenic and chemotactic for endothelial cells in vitro and angiogenic in many in vivo models. Based on previous work that (1) VEGF is up-regulated during membranous fracture healing, (2) the fracture site contains a hypoxic gradient, (3) VEGF is up-regulated in a variety of cells in response to hypoxia, and (4) VEGF is expressed by isolated osteoblasts in vitro stimulated by other fracture cytokines, the hypothesis that hypoxia may regulate the expression of VEGF by osteoblasts was formulated. This hypothesis was tested in a series of in vitro studies in which VEGF mRNA and protein expression was assessed after exposure of osteoblast-like cells to hypoxic stimuli. In addition, the effects of a hypoxic microenvironment on osteoblast proliferation and differentiation in vitro was analyzed. These results demonstrate that hypoxia does, indeed, regulate expression of VEGF in osteoblast-like cells in a dose-dependent fashion. In addition, it is demonstrated that hypoxia results in decreased cellular proliferation, decreased expression of proliferating cell nuclear antigen, and increased alkaline phosphatase (a marker of osteoblast differentiation). Taken together, these data suggest that osteoblasts, through the expression of VEGF, may be in part responsible for angiogenesis and the resultant increased blood flow to fractured bone segments. In addition, these data provide evidence that osteoblasts have oxygen-sensing mechanisms and that decreased oxygen tension can regulate gene expression, cellular proliferation, and cellular differentiation.


Assuntos
Fatores de Crescimento Endotelial/metabolismo , Linfocinas/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Oxigênio/fisiologia , Fosfatase Alcalina/metabolismo , Animais , Northern Blotting , Western Blotting , Divisão Celular , Hipóxia Celular/fisiologia , Células Cultivadas , Fatores de Crescimento Endotelial/genética , Linfocinas/genética , Camundongos , Fenótipo , Antígeno Nuclear de Célula em Proliferação/metabolismo , RNA Mensageiro/metabolismo , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular
14.
Plast Reconstr Surg ; 106(4): 852-61; discussion 862-7, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11007400

RESUMO

Although it is one of the most commonly occurring craniofacial congenital disabilities, craniosynostosis (the premature fusion of cranial sutures) is nearly impossible to prevent because the molecular mechanisms that regulate the process of cranial suture fusion remain largely unknown. Recent studies have implicated the dura mater in determining the fate of the overlying cranial suture; however, the molecular biology within the suture itself has not been sufficiently investigated. In the murine model of cranial suture fusion, the posterior frontal suture is programmed to begin fusing by postnatal day 12 in rats (day 25 in mice), reliably completing bony union by postnatal day 22 (day 45 in mice). In contrast, the sagittal suture remains patent throughout the life of the animal. Using this model, this study sought to examine for the first time what differences in gene expression--if any--exist between the two sutures with opposite fates. For each series of experiments, 35 to 40 posterior frontal and sagittal suture complexes were isolated from 6-day-old Sprague-Dawley rat pups. Suture-derived cell cultures were established, and ribonuicleic acid was derived from snap-frozen, isolated suture tissue. Results demonstrated that molecular differences between the posterior frontal and sagittal suture complexes were readily identified in vivo, although these distinctions were lost once the cells comprising the suture complex were cultured in vitro. Hypothetically, this change in gene expression resulted from the loss of the influence of the underlying dura mater. Significant differences in the expression of genes encoding extracellular matrix proteins existed in vivo between the posterior frontal and sagittal sutures. However, the production of the critical, regulatory cytokine transforming growth factor beta-1 was equal between the two suture complexes, lending further support to the hypothesis that dura mater regulates the fate of the overlying cranial suture.


Assuntos
Suturas Cranianas/cirurgia , Craniossinostoses/cirurgia , Expressão Gênica/fisiologia , Fator de Crescimento Transformador beta/genética , Animais , Animais Recém-Nascidos , Craniossinostoses/genética , Craniossinostoses/fisiopatologia , Dura-Máter/fisiopatologia , Camundongos , Osteocalcina/genética , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley
15.
Plast Reconstr Surg ; 107(1): 124-34, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11176610

RESUMO

For the reconstructive plastic surgeon, knowledge of the molecular biology underlying membranous fracture healing is becoming increasingly vital. Understanding the complex patterns of gene expression manifested during the course of membranous fracture repair will be crucial to designing therapies that augment poor fracture healing or that expedite normal osseous repair by strategic manipulation of the normal course of gene expression. In the current study, we present a rat model of membranous bone repair. This model has great utility because of its technical simplicity, reproducibility, and relatively low cost. Furthermore, it is a powerful tool for analysis of the molecular regulation of membranous bone repair by immunolocalization and/or in situ hybridization techniques. In this study, an osteotomy was made within the caudal half of the hemimandible, thus producing a stable bone defect without the need for external or internal fixation. The healing process was then catalogued histologically in 28 Sprague-Dawley rats that were serially killed at 1, 2, 3, 4, 5, 6, and 8 weeks after operation. Furthermore, using this novel model, we analyzed, within the context of membranous bone healing, the temporal and spatial expression patterns of several members of the bone morphogenetic protein (BMP) family, known to be critical regulators of cells of osteoblast lineage. Our data suggest that BMP-2/-4 and BMP-7, also known as osteogenic protein-1 (OP-1), are expressed by osteoblasts, osteoclasts, and other more primitive mesenchymal cells within the fracture callus during the early stages of membranous fracture healing. These proteins continue to be expressed during the process of bone remodeling, albeit less prominently. The return of BMP-2/-4 and OP-1 immunostaining to baseline intensity coincides with the histological appearance of mature lamellar bone. Taken together, these data underscore the potentially important regulatory role played by the bone morphogenetic proteins in the process of membranous bone repair.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Modelos Animais de Doenças , Consolidação da Fratura , Fraturas Cranianas/metabolismo , Fator de Crescimento Transformador beta , Animais , Proteína Morfogenética Óssea 2 , Proteína Morfogenética Óssea 4 , Proteína Morfogenética Óssea 7 , Proteínas Morfogenéticas Ósseas/análise , Consolidação da Fratura/fisiologia , Imuno-Histoquímica , Masculino , Mandíbula/química , Mandíbula/patologia , Mandíbula/cirurgia , Osteotomia , Ratos , Ratos Sprague-Dawley , Fraturas Cranianas/patologia
16.
Plast Reconstr Surg ; 107(2): 441-53, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11214060

RESUMO

Distraction osteogenesis is a well-established method of endogenous tissue engineering. This technique has significantly augmented our armamentarium of reconstructive craniofacial procedures. Although the histologic and ultrastructural changes associated with distraction osteogenesis have been extensively described, the molecular mechanisms governing successful membranous distraction remain unknown. Using an established rat model, the molecular differences between successful (i.e., osseous union with gradual distraction) and ineffective (i.e., fibrous union with acute lengthening) membranous bone lengthening was analyzed. Herein, the first insight into the molecular mechanisms of successful membranous bone distraction is provided. In addition, these data provide the foundation for future targeted therapeutic manipulations designed to improve osseous regeneration. Vertical mandibular osteotomies were created in 52 adult male Sprague-Dawley rats, and the animals were fitted with customized distraction devices. Twenty-six animals underwent immediate acute lengthening (3 mm; a length previously shown to result in fibrous union) and 26 animals were gradually distracted (after a 3-day latency period, animals were distracted 0.25 mm twice daily for 6 days; total = 3 mm). Four mandibular regenerates were harvested from each group for RNA analysis on 5, 7, 9, 23, and 37 days postoperatively (n = 40). Two mandibular regenerates were also harvested from each group and prepared for immunohistochemistry on postoperative days 5, 7, and 37 (n = 12). In addition to the 52 experimental animals, 4 control rats underwent sham operations (skin incision only) and mandibular RNA was immediately collected. Control and experimental specimens were analyzed for collagen I, osteocalcin, tissue inhibitor of metalloproteinase-1, and vascular endothelial growth factor mRNA and protein expression. In this study, marked elevation of critical extracellular matrix molecules (osteocalcin and collagen I) during the consolidation phase of gradual distraction compared with acute lengthening is demonstrated. In addition, the expression of an inhibitor of extracellular matrix turnover, tissue inhibitor of metalloproteinase-1, remained strikingly elevated in gradually distracted animals. Finally, this study demonstrated that neither gradual distraction nor acute lengthening appreciably alters vascular endothelial growth factor expression. These results suggest that gradual distraction osteogenesis promotes successful osseous bone repair by regulating the expression of bone-specific extracellular matrix molecules. In contrast, decreased production or increased turnover of bone scaffolding proteins (i.e., collagen) or regulators of mineralization (i.e., osteocalcin) may lead to fibrous union during acute lengthening.


Assuntos
Mandíbula/cirurgia , Osteogênese por Distração/métodos , Animais , Regeneração Óssea/fisiologia , Proteínas da Matriz Extracelular/metabolismo , Técnicas Imunoenzimáticas , Masculino , Mandíbula/patologia , Ratos , Ratos Sprague-Dawley
17.
Plast Reconstr Surg ; 106(5): 1049-61, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11039376

RESUMO

The well-described detrimental effects of ionizing radiation on the regeneration of bone within a fracture site include decreased osteocyte number, suppressed osteoblast activity, and diminished vascularity. However, the biologic mechanisms underlying osteoradionecrosis and the impaired fracture healing of irradiated bone remain undefined. Ionizing radiation may decrease successful osseous repair by altering cytokine expression profiles resulting from or leading to a change in the osteoblastic differentiation state. These changes may, in turn, cause alterations in osteoblast proliferation and extracellular matrix formation. The purpose of this study was to investigate the effects of ionizing radiation on the proliferation, maturation, and cytokine production of MC3T3-E1 osteoblast-like cells in vitro. Specifically, the authors examined the effects of varying doses of ionizing radiation (0, 40, 400, and 800 cGy) on the expression of transforming growth factor-beta1 (TGF-beta1), vascular endothelial growth factor (VEGF), and alkaline phosphatase. In addition, the authors studied the effects of ionizing radiation on MC3T3-E1 cellular proliferation and the ability of conditioned media obtained from control and irradiated cells to regulate the proliferation of bovine aortic endothelial cells. Finally, the authors evaluated the effects of adenovirus-mediated TGF-beta1 gene therapy in an effort to "rescue" irradiated osteoblasts. The exposure of osteoblast-like cells to ionizing radiation resulted in dose-dependent decreases in cellular proliferation and promoted cellular differentiation (i.e., increased alkaline phosphatase production). Additionally, ionizing radiation caused dose-dependent decreases in total TGF-beta1 and VEGF protein production. Decreases in total TGF-beta1 production were due to a decrease in TGF-beta1 production per cell. In contrast, decreased total VEGF production was secondary to decreases in cellular proliferation, because the cellular production of VEGF by irradiated osteoblasts was moderately increased when VEGF production was corrected for cell number. Additionally, in contrast to control cells (i.e., nonirradiated), conditioned media obtained from irradiated osteoblasts failed to stimulate the proliferation of bovine aortic endothelial cells. Finally, transfection of control and irradiated cells with a replication-deficient TGF-beta1 adenovirus before irradiation resulted in an increase in cellular production of TGF-beta1 protein and VEGF. Interestingly, this intervention did not alter the effects of irradiation on cellular proliferation, which implies that alterations in TGF-beta1 expression do not underlie the deficiencies noted in cellular proliferation. The authors hypothesize that ionizing radiation-induced alterations in the cytokine profiles and differentiation states of osteoblasts may provide insights into the cellular mechanisms underlying osteoradionecrosis and impaired fracture healing.


Assuntos
Osteoblastos/efeitos da radiação , Fosfatase Alcalina/metabolismo , Animais , Bovinos , Divisão Celular/efeitos da radiação , Células Clonais , Meios de Cultivo Condicionados/farmacologia , Fatores de Crescimento Endotelial/metabolismo , Endotélio Vascular/citologia , Técnicas de Transferência de Genes , Técnicas In Vitro , Linfocinas/metabolismo , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismo , Doses de Radiação , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular
18.
Plast Reconstr Surg ; 106(3): 630-8; discussion 639, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10987470

RESUMO

The ability of immature animals and newborns to orchestrate successful calvarial reossification is well described. This capacity is markedly attenuated in mature animals and in humans greater than 2 years of age. Previous studies have implicated the dura mater as critical to successful calvarial reossification. The authors have previously reported that immature, but not mature, dural tissues are capable of elaborating a high expression of osteogenic growth factors and extracellular matrix molecules. These findings led to the hypothesis that a differential expression of osteogenic growth factors and extracellular matrix molecules by immature and mature dural tissues may be responsible for the clinically observed phenotypes (i.e., immature animals reossify calvarial defects; mature animals do not). This study continues to explore the hypothesis through an analysis of transforming growth factor (TGF)-beta3, collagen type III, and alkaline phosphatase mRNA expression. Northern blot analysis of total RNA isolated from freshly harvested immature (n = 60) and mature (n = 10) dural tissues demonstrated a greater than three-fold, 18-fold, and nine-fold increase in TGF-beta3, collagen type III, and alkaline phosphatase mRNA expression, respectively, in immature dural tissues as compared with mature dural tissues. Additionally, dural cell cultures derived from immature (n = 60) and mature dura mater (n = 10) were stained for alkaline phosphatase activity to identify the presence of osteoblast-like cells. Alkaline phosphatase staining of immature dural cells revealed a significant increase in the number of alkaline phosphatase-positive cells as compared with mature dural tissues (p < 0.001). In addition to providing osteogenic humoral factors (i.e., growth factors and extracellular matrix molecules), this finding suggests that immature, but not mature, dura mater may provide cellular elements (i.e., osteoblasts) that augment successful calvarial reossification. These studies support the hypothesis that elaboration of osteogenic growth factors (i.e., TGF-beta33) and extracellular matrix molecules (i.e., collagen type III and alkaline phosphatase) by immature, but not mature, dural tissues may be critical for successful calvarial reossification. In addition, these studies suggest for the first time that immature dural tissues may provide cellular elements (i.e., osteoblasts) to augment this process.


Assuntos
Fosfatase Alcalina/genética , Colágeno/genética , Dura-Máter/fisiologia , Osteogênese/fisiologia , Crânio/fisiologia , Fator de Crescimento Transformador beta/genética , Envelhecimento/fisiologia , Animais , Northern Blotting , Células Cultivadas , Dura-Máter/química , Dura-Máter/crescimento & desenvolvimento , Histocitoquímica , Osteoblastos/citologia , RNA Mensageiro/análise , Ratos , Ratos Sprague-Dawley
19.
Plast Reconstr Surg ; 106(2): 360-71; discussion 372, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10946935

RESUMO

Transforming growth factor-betas (TGF-beta) have been demontstrated to be upregulated during osteoblast function in vitro and during cranial suture fusion in vivo. The authors hypothesized that spontaneous reossification of calvarial defects was also associated with upregulation of TGF-beta. The present study was designed to (1) evaluate the concept of a critical-size defect within the calvaria in an adult guinea pig model and (2) investigate the association between the ossification of calvarial defects and TGF-beta upregulation. Paired circular parietal defects with diameters of 3 and 5 mm and single parietal defects with diameters of 8 or 12 mm were made in 45 six-month-old skeletally mature guinea pigs. Three animals per defect size were killed after survival periods of 3 days, 1 week, 4 weeks, 8 weeks, or 12 weeks. New bone ingrowth was evaluated by assessing for linear closure by a traditional linear method and by a modified cross-sectional area method using an image analysis system in which the thickness of new bone was taken into account. Immunohistochemistry was performed using rabbit polyclonal antibodies to localize TGF-beta1, -beta2, and -beta3. All specimens were photographed, and the intensity of immunostaining was graded based on subjective photographic assessment by three independent reviewers. No defect demonstrated any measurable bone replacement after a survival period of 3 days. All 3- and 5-mm defects were completely reossified after 12 weeks based on the linear analysis of new bone, indicating these defects to be less than critical size. However, new bone formation in the 5-mm defects never exceeded a mean of 40 percent by cross-sectional area of new bone. Percent of new bone formation by cross-sectional area was significantly higher within 3-mm defects than in all larger defects 4 weeks after the craniotomy, reaching a mean of 89 percent new bone by 12 weeks. Persistent gaps were noted on linear analysis of the 8- and 12-mm wounds by 12 weeks, and mean percent new bone by cross-sectional area remained below 30 percent. Immunolocalization demonstrated osteogenic fronts at the advancing bone edge and the endocranial side, in which the osteoblasts stained strongly for all isoforms of TGF-beta. The intensity of osteoblast expression waned considerably after the majority of the defect had reossified. These data indicate that histometric analysis based on cross-sectional area more accurately reflects the osteogenic potential of a cranial defect than does linear inspection of defect closure. Although the interpretation of immunolocalization studies is highly subjective, independent assessment by three reviewers indicates that isoforms of TGF-beta were upregulated during a limited "window" of time corresponding to the period of active calvarial reossification, and expression of TGF-beta corresponded to osteoblast activity within osteogenic fronts.


Assuntos
Osteogênese/genética , Osso Parietal/cirurgia , Fator de Crescimento Transformador beta/genética , Animais , Regeneração Óssea/fisiologia , Craniotomia , Expressão Gênica/fisiologia , Cobaias , Masculino , Osteoblastos/patologia , Osteoblastos/fisiologia , Osso Parietal/patologia , Regulação para Cima/fisiologia
20.
Plast Reconstr Surg ; 105(3): 980-90, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10724258

RESUMO

Normal and abnormal extracellular matrix turnover is thought to result, in part, from the balance in the expression of metalloproteinases and tissue inhibitors of metalloproteinases (TIMPs). The clinical manifestations of an imbalance in these relationships are evident in a variety of pathologic states, including osteoarthritis, deficient long-bone growth, rheumatoid arthritis, tumor invasion, and inadequate cartilage repair. Articular cartilage defects commonly heal as fibrocartilage, which is structurally inferior to the normal hyaline architecture of articular cartilage. Transforming growth factor-beta 1 (TGF-beta1), a cytokine central to growth, repair, and inflammation, has been shown to upregulate TIMP-1 expression in human and bovine articular cartilage. Additionally, members of the TGF-beta superfamily are thought to play key roles in chondrocyte growth and differentiation. Bone morphogenetic protein-2 (BMP-2), a member of this superfamily, has been shown to regulate chondrocyte differentiation states and extracellular matrix composition. It was proposed that, by optimizing extracellular matrix composition, BMP-2 would enhance articular cartilage healing. After determining the release kinetics of BMP-2 from a collagen type I implant (Long-Evans male rats; two implants/rat, n = 14), it was found that, in a tissue engineering application, BMP-2 induced a hyaline-like repair of New Zealand White rabbit knee articular cartilage defects (3-mm full-thickness defects in the femoral trochlea; 2 defects/rabbit, n = 36). The quality of cartilage repair with BMP-2 (with or without chondrocytes) was significantly better than defects treated with BMP-2, as assessed by a quantitative scoring scale. Immunohistochemical staining revealed TIMP-1 production in the cartilage defects treated with BMP-2. When studied in vitro, it was found that BMP-2 markedly increased TIMP-1 mRNA by both bovine articular and human rib chondrocytes. Additionally, increased TIMP-1 mRNA was translated into increased TIMP-1 protein production by bovine chondrocytes. Taken together, these data suggest that BMP-2 may be a useful cytokine to improve healing of cartilaginous defects. Furthermore, these data suggest that the beneficial effects of BMP-2 may be, in part, related to alterations in extracellular matrix turnover.


Assuntos
Proteínas Morfogenéticas Ósseas/farmacologia , Cartilagem Articular/citologia , Fator de Crescimento Transformador beta/farmacologia , Animais , Western Blotting , Proteína Morfogenética Óssea 2 , Proteínas Morfogenéticas Ósseas/fisiologia , Cartilagem/citologia , Cartilagem/metabolismo , Cartilagem Articular/metabolismo , Bovinos , Células Cultivadas , Colágeno , Matriz Extracelular/metabolismo , Humanos , Imuno-Histoquímica , Articulação do Joelho , Masculino , Próteses e Implantes , Coelhos , Ratos , Ratos Long-Evans , Costelas , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Fator de Crescimento Transformador beta/fisiologia , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA