Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
2.
PLoS Biol ; 20(7): e3001680, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35797414

RESUMO

Early career researchers (ECRs) are important stakeholders leading efforts to catalyze systemic change in research culture and practice. Here, we summarize the outputs from a virtual unconventional conference (unconference), which brought together 54 invited experts from 20 countries with extensive experience in ECR initiatives designed to improve the culture and practice of science. Together, we drafted 2 sets of recommendations for (1) ECRs directly involved in initiatives or activities to change research culture and practice; and (2) stakeholders who wish to support ECRs in these efforts. Importantly, these points apply to ECRs working to promote change on a systemic level, not only those improving aspects of their own work. In both sets of recommendations, we underline the importance of incentivizing and providing time and resources for systems-level science improvement activities, including ECRs in organizational decision-making processes, and working to dismantle structural barriers to participation for marginalized groups. We further highlight obstacles that ECRs face when working to promote reform, as well as proposed solutions and examples of current best practices. The abstract and recommendations for stakeholders are available in Dutch, German, Greek (abstract only), Italian, Japanese, Polish, Portuguese, Spanish, and Serbian.


Assuntos
Pesquisadores , Relatório de Pesquisa , Humanos , Poder Psicológico
4.
BMC Plant Biol ; 23(1): 445, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37735356

RESUMO

BACKGROUND: Drought is a major environmental stress that affects crop productivity worldwide. Although previous research demonstrated links between strigolactones (SLs) and drought, here we used barley (Hordeum vulgare) SL-insensitive mutant hvd14 (dwarf14) to scrutinize the SL-dependent mechanisms associated with water deficit response. RESULTS: We have employed a combination of transcriptomics, proteomics, phytohormonomics analyses, and physiological data to unravel differences between wild-type and hvd14 plants under drought. Our research revealed that drought sensitivity of hvd14 is related to weaker induction of abscisic acid-responsive genes/proteins, lower jasmonic acid content, higher reactive oxygen species content, and lower wax biosynthetic and deposition mechanisms than wild-type plants. In addition, we identified a set of transcription factors (TFs) that are exclusively drought-induced in the wild-type barley. CONCLUSIONS: Critically, we resolved a comprehensive series of interactions between the drought-induced barley transcriptome and proteome responses, allowing us to understand the profound effects of SLs in alleviating water-limiting conditions. Several new avenues have opened for developing barley more resilient to drought through the information provided. Moreover, our study contributes to a better understanding of the complex interplay between genes, proteins, and hormones in response to drought, and underscores the importance of a multidisciplinary approach to studying plant stress response mechanisms.


Assuntos
Hordeum , Hordeum/genética , Secas , Multiômica , Percepção
5.
Plant Physiol ; 190(2): 1005-1023, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35670757

RESUMO

Plants are able to sense changes in their light environments, such as the onset of day and night, as well as anticipate these changes in order to adapt and survive. Central to this ability is the plant circadian clock, a molecular circuit that precisely orchestrates plant cell processes over the course of a day. REVEILLE (RVE) proteins are recently discovered members of the plant circadian circuitry that activate the evening complex and PSEUDO-RESPONSE REGULATOR genes to maintain regular circadian oscillation. The RVE8 protein and its two homologs, RVE 4 and 6 in Arabidopsis (Arabidopsis thaliana), have been shown to limit the length of the circadian period, with rve 4 6 8 triple-knockout plants possessing an elongated period along with increased leaf surface area, biomass, cell size, and delayed flowering relative to wild-type Col-0 plants. Here, using a multi-omics approach consisting of phenomics, transcriptomics, proteomics, and metabolomics we draw new connections between RVE8-like proteins and a number of core plant cell processes. In particular, we reveal that loss of RVE8-like proteins results in altered carbohydrate, organic acid, and lipid metabolism, including a starch excess phenotype at dawn. We further demonstrate that rve 4 6 8 plants have lower levels of 20S proteasome subunits and possess significantly reduced proteasome activity, potentially explaining the increase in cell-size observed in RVE8-like mutants. Overall, this robust, multi-omic dataset provides substantial insight into the far-reaching impact RVE8-like proteins have on the diel plant cell environment.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metabolismo dos Carboidratos/genética , Carboidratos , Relógios Circadianos/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Amido/metabolismo , Fatores de Transcrição/metabolismo
6.
Environ Sci Technol ; 57(6): 2380-2392, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36724135

RESUMO

Hydraulic fracturing extracts oil and gas through the injection of water and proppants into subterranean formations. These injected fluids mix with the host rock formation and return to the surface as a complex wastewater containing salts, metals, and organic compounds, termed flowback and produced water (FPW). Previous research indicates that FPW is toxic to Daphnia magna (D. magna), impairing reproduction, molting, and maturation time; however, recovery from FPW has not been extensively studied. Species unable to recover have drastic impacts on populations on the ecological scale; thus, this study sought to understand if recovery from an acute 48 h FPW exposure was possible in the freshwater invertebrate, D. magna by using a combination of physiological and molecular analyses. FPW (0.75%) reduced reproduction by 30% and survivorship to 32% compared to controls. System-level quantitative proteomic analyses demonstrate extensive perturbation of metabolism and protein transport in both 0.25 and 0.75% FPW treatments after a 48 h FPW exposure. Collectively, our data indicate that D. magna are unable to recover from acute 48 h exposures to ≥0.25% FPW, as evidence of toxicity persists for at least 19 days post-exposure. This study highlights the importance of considering persisting effects following FPW remediation when modeling potential spill scenarios.


Assuntos
Fraturamento Hidráulico , Poluentes Químicos da Água , Animais , Daphnia/fisiologia , Proteômica , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Água
7.
Nucleic Acids Res ; 49(W1): W169-W173, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34023887

RESUMO

The prediction of functional domains is typically among the first steps towards understanding the function of new proteins and protein families. There are numerous databases of annotated protein domains that permit researchers to identify domains on individual proteins of interest. However, it is necessary to perform high-throughput domain searches to gain evolutionary insight into the functions of proteins and protein families. Unfortunately, at present, it is difficult to search for, and visualize domain conservation across multiple proteins and/or multiple groups of proteins in an intuitive manner. Here we present DomainViz, a new web-server that streamlines the identification and visualization of domains across multiple protein sequences. Currently, DomainViz uses the well-established PFAM and Prosite databases for domain searching and assembles intuitive, publication-ready 'monument valley' plots (mv-plots) that display the extent of domain conservation along two dimensions: positionality and frequency of occurrence in the input protein sequences. In addition, DomainViz produces a conventional domain-ordering figure. DomainViz can be used to explore the conservation of domains within a single protein family, across multiple families, and across families from different species to support studies into protein function and evolution. The web-server is publicly available at: https://uhrigprotools.biology.ualberta.ca/domainviz.


Assuntos
Domínios Proteicos , Software , Sequência de Aminoácidos , Sequência Conservada , Bases de Dados de Proteínas , Análise de Sequência de Proteína
8.
Plant J ; 106(6): 1509-1522, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33783885

RESUMO

Our modern understanding of diel cell regulation in plants stems from foundational work in the late 1990s that analysed the dynamics of selected genes and mutants in Arabidopsis thaliana. The subsequent rise of transcriptomics technologies such as microarrays and RNA sequencing has substantially increased our understanding of anticipatory (circadian) and reactive (light- or dark-triggered) diel events in plants. However, it is also becoming clear that gene expression data fail to capture critical events in diel regulation that can only be explained by studying protein-level dynamics. Over the past decade, mass spectrometry technologies and quantitative proteomic workflows have significantly advanced, finally allowing scientists to characterise diel protein regulation at high throughput. Initial proteomic investigations suggest that the diel transcriptome and proteome generally lack synchrony and that the timing of daily regulatory events in plants is impacted by multiple levels of protein regulation (e.g., post-translational modifications [PTMs] and protein-protein interactions [PPIs]). Here, we highlight and summarise how the use of quantitative proteomics to elucidate diel plant cell regulation has advanced our understanding of these processes. We argue that this new understanding, coupled with the extraordinary developments in mass spectrometry technologies, demands greater focus on protein-level regulation of, and by, the circadian clock. This includes hitherto unexplored diel dynamics of protein turnover, PTMs, protein subcellular localisation and PPIs that can be masked by simple transcript- and protein-level changes. Finally, we propose new directions for how the latest advancements in quantitative proteomics can be utilised to answer outstanding questions in plant chronobiology.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fenômenos Cronobiológicos , Regulação da Expressão Gênica de Plantas/fisiologia , Proteômica , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Relógios Circadianos/fisiologia , Espectrometria de Massas
9.
Plant J ; 105(4): 924-941, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33184936

RESUMO

Phosphorus absorbed in the form of phosphate (H2 PO4- ) is an essential but limiting macronutrient for plant growth and agricultural productivity. A comprehensive understanding of how plants respond to phosphate starvation is essential for the development of more phosphate-efficient crops. Here we employed label-free proteomics and phosphoproteomics to quantify protein-level responses to 48 h of phosphate versus phosphite (H2 PO3- ) resupply to phosphate-deprived Arabidopsis thaliana suspension cells. Phosphite is similarly sensed, taken up and transported by plant cells as phosphate, but cannot be metabolized or used as a nutrient. Phosphite is thus a useful tool for differentiating between non-specific processes related to phosphate sensing and transport and specific responses to phosphorus nutrition. We found that responses to phosphate versus phosphite resupply occurred mainly at the level of protein phosphorylation, complemented by limited changes in protein abundance, primarily in protein translation, phosphate transport and scavenging, and central metabolism proteins. Altered phosphorylation of proteins involved in core processes such as translation, RNA splicing and kinase signaling was especially important. We also found differential phosphorylation in response to phosphate and phosphite in 69 proteins, including splicing factors, translation factors, the PHT1;4 phosphate transporter and the HAT1 histone acetyltransferase - potential phospho-switches signaling changes in phosphorus nutrition. Our study illuminates several new aspects of the phosphate starvation response and identifies important targets for further investigation and potential crop improvement.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfatos/metabolismo , Fosfitos/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Transporte Biológico , Carbono/metabolismo , Respiração Celular , Células Cultivadas , Fosfatos/farmacologia , Fosfitos/farmacologia , Fosforilação , Proteoma/efeitos dos fármacos , Proteômica
10.
Anal Chem ; 94(2): 793-802, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34978796

RESUMO

Data-dependent acquisition (DDA) methods are the current standard for quantitative proteomics in many biological systems. However, DDA preferentially measures highly abundant proteins and generates data that is plagued with missing values, requiring extensive imputation. Here, we demonstrate that library-free BoxCarDIA acquisition, combining MS1-level BoxCar acquisition with MS2-level data-independent acquisition (DIA) analysis, outperforms conventional DDA and other library-free DIA (directDIA) approaches. Using a combination of low- (HeLa cells) and high- (Arabidopsis thaliana cell culture) dynamic range sample types, we demonstrate that BoxCarDIA can achieve a 40% increase in protein quantification over DDA without offline fractionation or an increase in mass-spectrometer acquisition time. Further, we provide empirical evidence for substantial gains in dynamic range sampling that translates to deeper quantification of low-abundance protein classes under-represented in DDA and directDIA data. Unlike both DDA and directDIA, our new BoxCarDIA method does not require full MS1 scans while offering reproducible protein quantification between replicate injections and providing more robust biological inferences. Overall, our results advance the BoxCarDIA technique and establish it as the new method of choice for label-free quantitative proteomics across diverse sample types.


Assuntos
Proteínas , Proteômica , Biblioteca Gênica , Células HeLa , Humanos , Espectrometria de Massas/métodos , Proteínas/análise , Proteoma/análise , Proteômica/métodos
11.
Plant Cell Physiol ; 62(6): 1012-1029, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34059891

RESUMO

Abiotic stresses such as drought result in large annual economic losses around the world. As sessile organisms, plants cannot escape the environmental stresses they encounter but instead must adapt to survive. Studies investigating plant responses to osmotic and/or salt stress have largely focused on short-term systemic responses, leaving our understanding of intermediate to longer-term adaptation (24 h to d) lacking. In addition to protein abundance and phosphorylation changes, evidence suggests reversible lysine acetylation may also be important for abiotic stress responses. Therefore, to characterize the protein-level effects of osmotic and salt stress, we undertook a label-free proteomic analysis of Arabidopsis thaliana roots exposed to 300 mM mannitol and 150 mM NaCl for 24 h. We assessed protein phosphorylation, lysine acetylation and changes in protein abundance, detecting significant changes in 245, 35 and 107 total proteins, respectively. Comparison with available transcriptome data indicates that transcriptome- and proteome-level changes occur in parallel, while post-translational modifications (PTMs) do not. Further, we find significant changes in PTMs, and protein abundance involve different proteins from the same networks, indicating a multifaceted regulatory approach to prolonged osmotic and salt stress. In particular, we find extensive protein-level changes involving sulfur metabolism under both osmotic and salt conditions as well as changes in protein kinases and transcription factors that may represent new targets for drought stress signaling. Collectively, we find that protein-level changes continue to occur in plant roots 24 h from the onset of osmotic and salt stress and that these changes differ across multiple proteome levels.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Pressão Osmótica , Raízes de Plantas/metabolismo , Estresse Salino , Acetilação , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Lisina/metabolismo , Fosforilação , Raízes de Plantas/fisiologia , Processamento de Proteína Pós-Traducional , Proteômica/métodos
13.
Nucleic Acids Res ; 47(2): e9, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30357413

RESUMO

We present a new method, CIDER-Seq (Circular DNA Enrichment sequencing) for the unbiased enrichment and long-read sequencing of viral-sized circular DNA molecules. We used CIDER-Seq to produce single-read full-length virus genomes for the first time. CIDER-Seq combines PCR-free virus enrichment with Single Molecule Real Time sequencing and a new sequence de-concatenation algorithm. We apply our technique to produce >1200 full-length, highly accurate geminivirus genomes from RNAi-transgenic and control plants in a field trial in Kenya. Using CIDER-Seq we can demonstrate for the first time that the expression of antiviral double-stranded RNA (dsRNA) in transgenic plants causes a consistent shift in virus populations towards species sharing low homology to the transgene derived dsRNA. Our method and its application in an economically important crop plant opens new possibilities in periodic virus sequence surveillance and accurate profiling of diverse circular DNA elements.


Assuntos
DNA Circular/química , DNA Viral/química , Geminiviridae/genética , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Plantas Geneticamente Modificadas/virologia , Análise de Sequência de DNA/métodos , Algoritmos , Plantas Geneticamente Modificadas/genética , Interferência de RNA
14.
Nature ; 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-33009522
17.
BMC Genomics ; 18(1): 514, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28679357

RESUMO

BACKGROUND: Reversible protein acetylation occurring on Lys-Ne has emerged as a key regulatory post-translational modification in eukaryotes. It is mediated by two groups of enzymes: lysine acetyltransferases (KATs) and lysine deacetylases (KDACs) that catalyze the addition and removal of acetyl groups from target proteins. Estimates indicate that protein acetylation is second to protein phosphorylation in abundance, with thousands of acetylated sites now identified in different subcellular compartments. Considering the important regulatory role of protein phosphorylation, elucidating the diversity of KATs and KDACs across photosynthetic eukaryotes is essential in furthering our understanding of the impact of reversible protein acetylation on plant cell processes. RESULTS: We report a genome-scale analysis of lysine acetyltransferase (KAT)- and lysine deacetylase (KDAC)-families from 53 photosynthetic eukaryotes. KAT and KDAC orthologs were identified in sequenced genomes ranging from glaucophytes and algae to land plants and then analyzed for evolutionary relationships. Based on consensus molecular phylogenetic and subcellular localization data we found new sub-classes of enzymes in established KAT- and KDAC-families. Specifically, we identified a non-photosynthetic origin of the HD-tuin family KDACs, a new monocot-specific Class I HDA-family sub-class, and a phylogenetically distinct Class II algal/heterokont sub-class which maintains an ankyrin domain not conserved in land plant Class II KDACs. Protein structure analysis showed that HDA- and SRT-KDACs exist as bare catalytic subunits with highly conserved median protein length, while all KATs maintained auxiliary domains, with CBP- and TAFII250-KATs displaying protein domain gain and loss over the course of photosynthetic eukaryote evolution in addition to variable protein length. Lastly, promoter element enrichment analyses across species revealed conserved cis-regulatory sequences that support KAT and KDAC involvement in the regulation of plant development, cold/drought stress response, as well as cellular processes such as the circadian clock. CONCLUSIONS: Our results reveal new evolutionary, structural, and biological insights into the KAT- and KDAC-families of photosynthetic eukaryotes, including evolutionary parallels to protein kinases and protein phosphatases. Further, we provide a comprehensive annotation framework through our extensive phylogenetic analysis, from which future research investigating aspects of protein acetylation in plants can use to position new findings in a broader context.


Assuntos
Eucariotos/metabolismo , Lisina Acetiltransferases/metabolismo , Fotossíntese , Fatores de Transcrição/metabolismo , Acetilação , Sequência de Aminoácidos , Eucariotos/enzimologia , Eucariotos/genética , Evolução Molecular , Genômica , Lisina Acetiltransferases/química , Lisina Acetiltransferases/genética , Filogenia , Plantas/enzimologia , Plantas/genética , Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Alinhamento de Sequência
18.
Mol Plant Microbe Interact ; 29(7): 527-34, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27070326

RESUMO

Cassava brown streak disease (CBSD) has become a major constraint to cassava production in East and Central Africa. The identification of new sources of CBSD resistance is essential to deploy CBSD mitigation strategies, as the disease is progressing westwards to new geographical areas. A stringent infection method based on top cleft-grafting combined with precise virus titer quantitation was utilized to screen 14 cassava cultivars and elite breeding lines. When inoculated with mixed infections of Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), the scions of elite breeding lines KBH 2006/18 and KBH 2006/26 remained symptom-free during a 16-week period of virus graft inoculation, while susceptible varieties displayed typical CBSD infection symptoms at 4 weeks after grafting. The identified CBSD resistance was stable under the coinoculation of CBSV and UCBSV with cassava geminiviruses. Double-grafting experiments revealed that transmission of CBSV and UCBSV to CBSD-susceptible top scions was delayed when using intermediate scions of elite breeding lines KBH 2006/18 and KBH 2006/26. Nonetheless, comparison of virus systemic movement using scions from KBH2006/18 and a transgenic CBSD resistant 60444 line (60444-Hp9 line) showed that both CBSV and UCBSV move at undetectable levels through the stems. Further, protoplast-based assays of virus titers showed that the replication of CBSV is inhibited in the resistant line KBH2006/18, suggesting that the identified CBSD resistance is at least partially based on inhibition of virus replication. Our molecular characterization of CBSD resistance in cassava offers a robust virus-host system to further investigate the molecular determinants of CBSD resistance.


Assuntos
Resistência à Doença/genética , Manihot/genética , Doenças das Plantas/imunologia , Potyviridae/fisiologia , Manihot/imunologia , Manihot/virologia , Doenças das Plantas/virologia , Carga Viral
19.
Sci Adv ; 10(26): eadl3199, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941453

RESUMO

Decades of research have uncovered how plants respond to two environmental variables that change across latitudes and over seasons: photoperiod and temperature. However, a third such variable, twilight length, has so far gone unstudied. Here, using controlled growth setups, we show that the duration of twilight affects growth and flowering time via the LHY/CCA1 clock genes in the model plant Arabidopsis. Using a series of progressively truncated no-twilight photoperiods, we also found that plants are more sensitive to twilight length compared to equivalent changes in solely photoperiods. Transcriptome and proteome analyses showed that twilight length affects reactive oxygen species metabolism, photosynthesis, and carbon metabolism. Genetic analyses suggested a twilight sensing pathway from the photoreceptors PHY E, PHY B, PHY D, and CRY2 through LHY/CCA1 to flowering modulation through the GI-FT pathway. Overall, our findings call for more nuanced models of day-length perception in plants and posit that twilight is an important determinant of plant growth and development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Flores , Regulação da Expressão Gênica de Plantas , Fotoperíodo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Flores/crescimento & desenvolvimento , Flores/genética , Flores/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Espécies Reativas de Oxigênio/metabolismo , Fotossíntese , Criptocromos
20.
Mol Omics ; 20(4): 265-282, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38334713

RESUMO

Clubroot is a destructive root disease of canola (Brassica napus L.) caused by Plasmodiophora brassicae Woronin. Despite extensive research into the molecular responses of B. napus to P. brassicae, there is limited information on proteome- and metabolome-level changes in response to the pathogen, especially during the initial stages of infection. In this study, we have investigated the proteome- and metabolome- level changes in the roots of clubroot-resistant (CR) and -susceptible (CS) doubled-haploid (DH) B. napus lines, in response to P. brassicae pathotype 3H at 1-, 4-, and 7-days post-inoculation (DPI). Root proteomes were analyzed using nanoflow liquid chromatography coupled with tandem mass spectrometry (nano LC-MS/MS). Comparisons of pathogen-inoculated and uninoculated root proteomes revealed 2515 and 1556 differentially abundant proteins at one or more time points (1-, 4-, and 7-DPI) in the CR and CS genotypes, respectively. Several proteins related to primary metabolites (e.g., amino acids, fatty acids, and lipids), secondary metabolites (e.g., glucosinolates), and cell wall reinforcement-related proteins [e.g., laccase, peroxidases, and plant invertase/pectin methylesterase inhibitors (PInv/PMEI)] were identified. Eleven nucleotides and nucleoside-related metabolites, and eight fatty acids and sphingolipid-related metabolites were identified in the metabolomics study. To our knowledge, this is the first report of root proteome-level changes and associated alterations in metabolites during the early stages of P. brassicae infection in B. napus.


Assuntos
Brassica napus , Metaboloma , Doenças das Plantas , Proteínas de Plantas , Raízes de Plantas , Plasmodioforídeos , Proteoma , Brassica napus/metabolismo , Brassica napus/parasitologia , Brassica napus/genética , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Proteoma/metabolismo , Raízes de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Espectrometria de Massas em Tandem , Proteômica/métodos , Metabolômica/métodos , Resistência à Doença/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA