RESUMO
Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production.
RESUMO
As a fundamental product of CO2 conversion through two-electron transfer, CO is used to produce numerous chemicals and fuels with high efficiency, which has broad application prospects. In this work, it has successfully optimized catalytic activity by fabricating an electrocatalyst featuring crystalline-amorphous CoO-InOx interfaces, thereby significantly expediting CO production. The 1.21%CoO-InOx consists of randomly dispersed CoO crystalline particles among amorphous InOx nanoribbons. In contrast to the same-phase structure, the unique CoO-InOx heterostructure provides plentiful reactive crystalline-amorphous interfacial sites. The Faradaic efficiency of CO (FECO) can reach up to 95.67% with a current density of 61.72 mA cm-2 in a typical H-cell using MeCN containing 0.5 M 1-Butyl-3-methylimidazolium hexafluorophosphate ([Bmim]PF6) as the electrolyte. Comprehensive experiments indicate that CoO-InOx interfaces with optimization of charge transfer enhance the double-layer capacitance and CO2 adsorption capacity. Theoretical calculations further reveal that the regulating of the electronic structure at interfacial sites not only optimizes the Gibbs free energy of *COOH intermediate formation but also inhibits HER, resulting in high selectivity toward CO.
RESUMO
Direct CO2 electroreduction to valuable chemicals is critical for carbon neutrality, while its main products are limited to simple C1 /C2 compounds, and traditionally, the anodic O2 byproduct is not utilized. We herein report a tandem electrothermo-catalytic system that fully utilizes both cathodic (i.e., CO) and anodic (i.e., O2 ) products during overall CO2 electrolysis to produce valuable organic amides from arylboronic acids and amines in a separate chemical reactor, following the Pd(II)-catalyzed oxidative aminocarbonylation mechanism. Hexamethylenetetramine (HMT)-incorporated silver and nickel hydroxide carbonate electrocatalysts were prepared for efficient coproduction of CO and O2 with Faradaic efficiencies of 99.3 % and 100 %, respectively. Systematic experiments, operando attenuated total reflection surface-enhanced Fourier transform infrared spectroscopy characterizations and theoretical studies reveal that HMT promotes *CO2 hydrogenation/*CO desorption for accelerated CO2 -to-CO conversion, and O2 inhibits reductive deactivation of the Pd(II) catalyst for enhanced oxidative aminocarbonylation, collectively leading to efficient synthesis of 10 organic amides with high yields of above 81 %. This work demonstrates the effectiveness of a tandem electrothermo-catalytic strategy for economically attractive CO2 conversion and amide synthesis, representing a new avenue to explore the full potential of CO2 utilization.
RESUMO
The electrochemical conversion of CO2 into valuable chemicals is a promising route for renowable energy storage and the mitigation of greenhouse gas emission, and production of multicarbon (C2+) products is highly desired. Here, we report a 1.4 %Pd-Cu@CuPz2 comprising of dispersive CuOx and PdO dual nanoclusters embedded in the MOF CuPz2 (Pz=Pyrazole), which achieves a high C2+ Faradaic efficiency (FEC2+) of 81.9 % and C2+ alcohol FE of 47.5 % with remarkable stability when using 0.1â M KCl aqueous solution as electrolyte in a typical H-cell. Particularly, the FE of alcohol is obviously improved on 1.4 %Pd-Cu@CuPz2 compared to Cu@CuPz2. Theoretical calculations have revealed that the enhanced interfacial electron transfer facilitates the adsorption of *CO intermediate and *CO-*CO dimerization on the Cu-Pd dual sites bridged by Cu nodes of CuPz2. Additionally, the oxophilicity of Pd can stabilize the key intermediate *CH2CHO and promote subsequent proton-coupled electron transfer more efficiently, confirming that the formation pathway is skew towards *C2H5OH. Consequently, the Cu-Pd dual sites play a synergistic tandem role in cooperatively improving the selectivity of alcohol and accelerating reductive conversion of CO2 to C2+.
RESUMO
Hydrogen peroxide (H2 O2 ) and formate are important chemicals used in various chemical manufacturing industries. One promising approach for the simultaneous production of these chemicals is coupling anodic two-electron water oxidation with cathodic CO2 reduction in an electrolyzer using nonprecious bifunctional electrocatalysts. Herein, we report an innovative hybrid electrosynthesis strategy using Zn-doped SnO2 (Zn/SnO2 ) nanodots as bifunctional redox electrocatalysts to achieve Faradaic efficiencies of 80.6 % and 92.2 % for H2 O2 and formate coproduction, respectively, along with excellent stability for at least 60â h at a current density of ≈150â mA cm-2 . Through a combination of physicochemical characterizations, including operando attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), isotope labeling mass spectrometry (MS)/1 H NMR and quasi-in situ electron paramagnetic resonance (EPR), with density functional theory (DFT) calculations, we discovered that the Zn dopant facilitates the coupling of *OH intermediates to promote H2 O2 production and optimizes the adsorption of *OCHO intermediates to accelerate formate formation. Our findings offer new insights into designing more efficient bifunctional electrocatalyst-based pair-electrosynthesis system for the coproduction of H2 O2 and formate feedstocks.