Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 32(8): 14394-14404, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38859385

RESUMO

The inter-plane crosstalk and limited axial resolution are two key points that hinder the performance of three-dimensional (3D) holograms. The state-of-the-art methods rely on increasing the orthogonality of the cross-sections of a 3D object at different depths to lower the impact of inter-plane crosstalk. Such strategy either produces unidirectional 3D hologram or induces speckle noise. Recently, learning-based methods provide a new way to solve this problem. However, most related works rely on convolution neural networks and the reconstructed 3D holograms have limited axial resolution and display quality. In this work, we propose a vision transformer (ViT) empowered physics-driven deep neural network which can realize the generation of omnidirectional 3D holograms. Owing to the global attention mechanism of ViT, our 3D CGH has small inter-plane crosstalk and high axial resolution. We believe our work not only promotes high-quality 3D holographic display, but also opens a new avenue for complex inverse design in photonics.

2.
Nano Lett ; 18(12): 8016-8024, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30520648

RESUMO

Nanostructured metasurfaces demonstrate extraordinary capabilities to control light at the subwavelength scale, emerging as key optical components to physical realization of multitasked devices. Progress in multitasked metasurfaces has been witnessed in making a single metasurface multitasked by mainly resorting to extra spatial freedom, for example, interleaved subarrays, different angles. However, it imposes a challenge of suppressing the cross-talk among multiwavelength without the help of extra spatial freedom. Here, we introduce an entirely novel strategy of multitasked metasurfaces with noninterleaved single-size Si nanobrick arrays and minimalist spatial freedom demonstrating massive information on 6-bit encoded color holograms. The interference between electric dipole and magnetic dipole in individual Si nanobricks with in-plane orientation enables manipulating six bases of incident photons simultaneously to reconstructed 6-bit wavelength- and spin-dependent multicolor images. Those massively reconstructed images can be distinguished by pattern recognition. It opens an alternative route for integrated optics, data encoding, security encryption, and information engineering.

3.
J Ethnopharmacol ; 334: 118515, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972530

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In Mongolian medicine, Loulu flower (LLF), the dried inflorescence of Rhaponticum uniflorum (L.) DC. from the Compositae family, has been used to clear heat and relieve toxicity for millennia, particularly in the treatment of pneumonia. AIM OF THIS STUDY: To reveal the effects of LLF on mice with lipopolysaccharide (LPS)-stimulated acute lung injury (ALI) and elucidate the underlying mechanisms. MATERIALS AND METHODS: ALI was established in BALB/c mice via nasal drops administration of LPS (5 mg/kg). The mice were then orally administrated with various doses of LLF extracts and the positive drug dexamethasone (DEX, 5 mg/kg), once daily for seven consecutive days. Last day, after being stimulated with LPS for 6h, the mice were closed dislocation of cervical vertebra, the serum, bronchus alveolar lavage fluid (BALF) and lung tissue were put into the EP tube and stored at -80 °C for further analysis. The changes of histopathology were tested by hematoxylin and eosin stain (H&E), the levels of, IL-1ß, IL-18, TNF-α and IL-4 in BALF and serum were measured by ELISA. The pathways related to the treatment of ALI were predicted by network pharmacology. The expression levels of TLR4/NF-κB and NLRP3 signaling pathway-associated proteins, COX-2 and ERK were tested by western blotting. The levels of P65 and NLRP3 in lung tissues were determined by immunofluorescence analysis. RESULTS: LLF total extract and the extract parts could alleviate the inflammatory cell infiltration, thicken the alveolar walls in lung tissues, reduce the levels of IL-18, IL-1ß in BALF, the TNF-α in both BALF and serum, meantime enhance the level of IL-4 in BALF and serum in mice with LPS-induced ALI. Our network pharmacology and comprehensive gene ontology analyses revealed the active constituents of LLF and the pathways, including TLR4/NF-κB, NLRP3 and MAPK signaling pathways, which play significant roles in ALI. Furthermore, both the total extract and its extraction portions suppressed the expressions of proteins related with the COX-2, p-ERK and TLR4/NF-κB signaling pathway (TLR4, p-IκB, p-p65), as well as the NLRP3 signaling pathway (NLRP3, cleaved caspase-1, caspase-1, IL-1ß). CONCLUSION: LLF could improve the pathological changes and reducing inflammatory reactions in mice induced by LPS. The mechanism may be related to the modulation of the TLR4/NLRP3 signaling pathways.

4.
Opt Lett ; 37(21): 4555-7, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23114361

RESUMO

An orthogonal dispersive spectral-domain optical coherence tomography (SDOCT) system based on a spectrometer consisting of a high spectral resolution virtually-imaged phased array (VIPA) and a low resolution diffraction grating is developed. Two-dimensional (2D) dispersion generated by the combination of the VIPA and the grating in conjunction with a 2D CCD leads to an improved performance of the spectrometer. Ultrahigh spectral resolution of 0.002 nm within a free spectrum range of 50 nm is realized, providing the spectrometer with a spectral sampling rate up to ~10(5). The developed SDOCT realizes an imaging depth over 80 mm, which is the longest depth range ever achieved by SDOCT. The increased spectral sampling rate also results in a high signal-to-noise ratio of the SDOCT system. The application of the developed system is further illustrated by quantitative phase imaging of a glass plate and an optical lens.

5.
ACS Nano ; 13(1): 821-829, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30615418

RESUMO

With the recent burgeoning advances in nano-optics, ultracompact, miniaturized photonic devices with high-quality and spectacular functionalities are highly desired. Such devices' design paradigms often call for the solution of a complex inverse nonanalytical/semianalytical problem. However, currently reported strategies dealing with amplitude-controlled meta-optics devices achieved limited functionalities mainly due to restricted search space and demanding computational schemes. Here, we established a segmented hierarchical evolutionary algorithm, aiming to solve large-pixelated, complex inverse meta-optics design and fully demonstrate the targeted performance. This paradigm allows significantly extended search space at a rapid converging speed. As typical complex proof-of-concept examples, large-pixelated meta-holograms are chosen to demonstrate the validity of our design paradigm. An improved fitness function is proposed to reinforce the performance balance among image pixels, so that the image quality is improved and computing speed is further accelerated. Broadband and full-color meta-holograms with high image fidelities using binary amplitude control are demonstrated experimentally. Our work may find important applications in the advanced design of future nanoscale high-quality optical devices.

6.
Nat Commun ; 10(1): 4789, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31636259

RESUMO

Metasurfaces as artificially nanostructured interfaces hold significant potential for multi-functionality, which may play a pivotal role in the next-generation compact nano-devices. The majority of multi-tasked metasurfaces encode or encrypt multi-information either into the carefully tailored metasurfaces or in pre-set complex incident beam arrays. Here, we propose and demonstrate a multi-momentum transformation metasurface (i.e., meta-transformer), by fully synergizing intrinsic properties of light, e.g., orbital angular momentum (OAM) and linear momentum (LM), with a fixed phase profile imparted by a metasurface. The OAM meta-transformer reconstructs different topologically charged beams into on-axis distinct patterns in the same plane. The LM meta-transformer converts red, green and blue illuminations to the on-axis images of "R", "G" and "B" as well as vivid color holograms, respectively. Thanks to the infinite states of light-metasurface phase combinations, such ultra-compact meta-transformer has potential in information storage, nanophotonics, optical integration and optical encryption.

7.
Light Sci Appl ; 7: 17156, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30839520

RESUMO

Quantum entanglements between integer-order and fractional-order orbital angular momentums (OAMs) have been previously discussed. However, the entangled nature of arbitrary rational-order OAM has long been considered a myth due to the absence of an effective strategy for generating arbitrary rational-order OAM beams. Therefore, we report a single metadevice comprising a bilaterally symmetric grating with an aperture, creating optical beams with dynamically controllable OAM values that are continuously varying over a rational range. Due to its encoded spiniform phase, this novel metagrating enables the production of an average OAM that can be increased without a theoretical limit by embracing distributed singularities, which differs significantly from the classic method of stacking phase singularities using fork gratings. This new method makes it possible to probe the unexplored niche of quantum entanglement between arbitrarily defined OAMs in light, which could lead to the complex manipulation of microparticles, high-dimensional quantum entanglement and optical communication. We show that quantum coincidence based on rational-order OAM-superposition states could give rise to low cross-talks between two different states that have no significant overlap in their spiral spectra. Additionally, future applications in quantum communication and optical micromanipulation may be found.

8.
Nanoscale ; 9(20): 6895-6900, 2017 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-28498378

RESUMO

Optical manipulation by dielectric waveguides enables the transportation of particles and biomolecules beyond diffraction limits. However, traditional dielectric waveguides could only transport objects in the forward direction which does not fulfill the requirements of the next generation lab-on-chip system where the integrated manipulation system should be much more flexible and multifunctional. In this work, bidirectional transportation of objects on the nanoscale is demonstrated on a rectangular waveguide made of the phase change material Ge2Sb2Te5 (GST) by numerical simulations. Either continuous pushing forces or pulling forces are generated on the trapped particles when the GST is in the amorphous or crystalline phase. With the technique of a femtosecond laser induced phase transition on the GST, we further proposed a reconfigurable optical trap array on the same waveguide. This work demonstrates GST waveguide's potential of achieving multifunctional manipulation of multiple objects on the nanoscale with plausible optical setups.

9.
Nanoscale ; 8(4): 2227-33, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26742094

RESUMO

The orbital angular momentum (OAM) of light can be taken as an independent and orthogonal degree of freedom for multiplexing in an optical communication system, potentially improving the system capacity to hundreds of Tbits per second. The high compactness and miniaturization of devices required for optical communications impose strict requirements on discriminating OAM modes of light at a small (micro- or even nano-meter) scale for demultiplexing; these requirements represent a challenge for traditional OAM sorting strategies. Here, we propose a semi-ring plasmonic nanoslit to directly and spatially sort various OAM modes of light into ∼120 nm-spaced mode intervals on the metallic surface. Making use of the constructive interference of a helical-phase modulated surface wave excited by a vortex beam, this on-chip interval can be stably demonstrated both theoretically and experimentally with a quasi-linear dependence on the plasmonic wavelength. Furthermore, its immunity to semi-ring geometry (i.e., the radius and number of rings) is verified by simulations. As a result, OAM discriminating is guaranteed by this stable sorting function. This technique shows a viable solution to discriminate the OAM of light at the nano-scale and might lead to broad benefits across the fields of optical communications, plasmonic physics and singular optics.

10.
Adv Mater ; 28(13): 2533-9, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26833667

RESUMO

A multifocus optical vortex metalens, with enhanced signal-to-noise ratio, is presented, which focuses three longitudinal vortices with distinct topological charges at different focal planes. The design largely extends the flexibility of tuning the number of vortices and their focal positions for circularly polarized light in a compact device, which provides the convenience for the nanomanipulation of optical vortices.

11.
Sci Adv ; 2(1): e1501168, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26767195

RESUMO

Metasurfaces operating in the cross-polarization scheme have shown an interesting degree of control over the wavefront of transmitted light. Nevertheless, their inherently low efficiency in visible light raises certain concerns for practical applications. Without sacrificing the ultrathin flat design, we propose a bilayer plasmonic metasurface operating at visible frequencies, obtained by coupling a nanoantenna-based metasurface with its complementary Babinet-inverted copy. By breaking the radiation symmetry because of the finite, yet small, thickness of the proposed structure and benefitting from properly tailored intra- and interlayer couplings, such coupled bilayer metasurface experimentally yields a conversion efficiency of 17%, significantly larger than that of earlier single-layer designs, as well as an extinction ratio larger than 0 dB, meaning that anomalous refraction dominates the transmission response. Our finding shows that metallic metasurface can counterintuitively manipulate the visible light as efficiently as dielectric metasurface (~20% in conversion efficiency in Lin et al.'s study), although the metal's ohmic loss is much higher than dielectrics. Our hybrid bilayer design, still being ultrathin (~λ/6), is found to obey generalized Snell's law even in the presence of strong couplings. It is capable of efficiently manipulating visible light over a broad bandwidth and can be realized with a facile one-step nanofabrication process.


Assuntos
Nanotecnologia/métodos , Ressonância de Plasmônio de Superfície/métodos , Desenho de Equipamento/métodos , Luz
12.
Sci Rep ; 5: 15668, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26494213

RESUMO

We propose an algorithm for jointly designing two phase-only masks (POMs) that allow for the encryption and noise-free retrieval of triple images. The images required for optical retrieval are first stored in quick-response (QR) codes for noise-free retrieval and flexible readout. Two sparse POMs are respectively calculated from two different images used as references for authentication based on modified Gerchberg-Saxton algorithm (GSA) and pixel extraction, and are then used as support constraints in a modified double-phase retrieval algorithm (MPRA), together with the above-mentioned QR codes. No visible information about the target images or the reference images can be obtained from each of these authenticated POMs. This approach allows users to authenticate the two POMs used for image reconstruction without visual observation of the reference images. It also allows user to friendly access and readout with mobile devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA