Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuropsychobiology ; 82(2): 91-103, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36731434

RESUMO

INTRODUCTION: Cognition and emotion are fundamentally integrated in the brain and mutually contribute to behavior. The relation between working memory (WM) and emotion is particularly suited to investigate cognition-emotion interaction since WM is an essential component of many higher cognitive functions. Ketamine affects not only WM but also has a profound impact on emotional processing. Effects of acute ketamine challenge are sensitive to modulation by pretreatment with lamotrigine, which inhibits glutamate release. Accordingly, a combination of these approaches should be particularly suited to investigate cognition-emotion interaction. METHODS: Seventy five healthy subjects were investigated in a double-blind, placebo-controlled, randomized, single-dose, parallel-group study with three treatment conditions. All subjects underwent two scanning sessions (acute/post 24 h). RESULTS: Compared to placebo, acute ketamine administration induced significant dissociative, psychotomimetic, and cognitive effects, as well as an increase in neural activity during WM for positive stimuli. Inhibition of glutamate release by pretreatment with lamotrigine did not influence ketamine's subjective effects, but significantly attenuated its impact on emotional WM and associated neural activity. There was no effect on these measures 24 h after ketamine administration. CONCLUSION: Our results demonstrate differential acute effects of modulated glutamate release and a swift restoration of disturbed neurobehavioral homeostasis in healthy subjects.


Assuntos
Ketamina , Humanos , Ketamina/farmacologia , Ketamina/uso terapêutico , Lamotrigina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Encéfalo , Emoções/fisiologia , Cognição , Anticonvulsivantes/farmacologia , Ácido Glutâmico
2.
Transl Psychiatry ; 14(1): 258, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890270

RESUMO

Neuroimaging studies have identified the anterior cingulate cortex (ACC) as one of the major targets of ketamine in the human brain, which may be related to ketamine's antidepressant (AD) mechanisms of action. However, due to different methodological approaches, different investigated populations, and varying measurement timepoints, results are not consistent, and the functional significance of the observed brain changes remains a matter of open debate. Inhibition of glutamate release during acute ketamine administration by lamotrigine provides the opportunity to gain additional insight into the functional significance of ketamine-induced brain changes. Furthermore, the assessment of trait negative emotionality holds promise to link findings in healthy participants to potential AD mechanisms of ketamine. In this double-blind, placebo-controlled, randomized, single dose, parallel-group study, we collected resting-state fMRI data before, during, and 24 h after ketamine administration in a sample of 75 healthy male and female participants who were randomly allocated to one of three treatment conditions (ketamine, ketamine with lamotrigine pre- treatment, placebo). Spontaneous brain activity was extracted from two ventral and one dorsal subregions of the ACC. Our results showed activity decreases during the administration of ketamine in all three ACC subregions. However, only in the ventral subregions of the ACC this effect was attenuated by lamotrigine. 24 h after administration, ACC activity returned to baseline levels, but group differences were observed between the lamotrigine and the ketamine group. Trait negative emotionality was closely linked to activity changes in the subgenual ACC after ketamine administration. These results contribute to an understanding of the functional significance of ketamine effects in different subregions of the ACC by combining an approach to modulate glutamate release with the assessment of multiple timepoints and associations with trait negative emotionality in healthy participants.


Assuntos
Emoções , Giro do Cíngulo , Ketamina , Lamotrigina , Imageamento por Ressonância Magnética , Humanos , Ketamina/farmacologia , Ketamina/administração & dosagem , Lamotrigina/farmacologia , Lamotrigina/administração & dosagem , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/metabolismo , Masculino , Feminino , Método Duplo-Cego , Adulto , Emoções/efeitos dos fármacos , Adulto Jovem , Antidepressivos/farmacologia , Antidepressivos/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/administração & dosagem
3.
Neuropsychopharmacology ; 48(12): 1735-1741, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37231079

RESUMO

There is intriguing evidence suggesting that ketamine might have distinct acute and delayed neurofunctional effects, as its acute administration transiently induces schizophrenia-like symptoms, while antidepressant effects slowly emerge and are most pronounced 24 h after administration. Studies attempting to characterize ketamine's mechanism of action by using blood oxygen level dependent (BOLD) imaging have yielded inconsistent results regarding implicated brain regions and direction of effects. This may be due to intrinsic properties of the BOLD contrast, while cerebral blood flow (CBF), as measured with arterial spin labeling, is a single physiological marker more directly related to neural activity. As effects of acute ketamine challenge are sensitive to modulation by pretreatment with lamotrigine, which inhibits glutamate release, a combination of these approaches should be particularly suited to offer novel insights. In total, 75 healthy participants were investigated in a double blind, placebo-controlled, randomized, parallel-group study and underwent two scanning sessions (acute/post 24 h.). Acute ketamine administration was associated with higher perfusion in interior frontal gyrus (IFG) and dorsolateral prefrontal cortex (DLPFC), but no other investigated brain region. Inhibition of glutamate release by pretreatment with lamotrigine abolished ketamine's effect on perfusion. At the delayed time point, pretreatment with lamotrigine was associated with lower perfusion in IFG. These findings underscore the idea that regionally selective patterns of CBF changes reflect proximate effects of modulated glutamate release on neuronal activity. Furthermore, region- specific sustained effects indicate both a swift restoration of disturbed homeostasis in DLPFC as well changes occurring beyond the immediate effects on glutamate signaling in IFG.


Assuntos
Ketamina , Humanos , Lamotrigina/farmacologia , Encéfalo/diagnóstico por imagem , Anticonvulsivantes/farmacologia , Glutamatos , Circulação Cerebrovascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA