Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Limnologica ; 51: 37-52, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25960581

RESUMO

A major issue for water resource management is the assessment of environmental degradation of lotic ecosystems. The overall aim of this study is to develop a multi-metric fish index for the cyprinid streams of the Caspian Sea Basin (MMICS) in Iran. As species diversity and composition as well as population structure in the studied streams are different to other regions, there is a substantial need to develop a new fish index. We sampled fish and environmental data of 102 sites in medium sized streams. We analysed human pressures at different spatial scales and determined applicable fish metrics showing a response to human pressures. In total, five structural and functional types of metrics (i.e. biodiversity, habitat, reproduction, trophic level and water quality sensitivity) were considered. In addition, we used 29 criteria describing major anthropogenic human pressures at sampling sites and generated a regional pressure index (RPI) that accounted for potential effects of multiple human pressures. For the MMICS development, we first defined reference sites (least disturbed) and secondly quantified differences of fish metrics between reference and impaired sites. We used a Generalised Linear Model (GLM) to describe metric responses to natural environmental differences in least disturbed conditions. By including impaired sites, the residual distributions of these models described the response range of each metric to human pressures, independently of natural environmental influence. Finally, seven fish metrics showed the best ability to discriminate between impaired and reference sites. The multi-metric fish index performed well in discriminating human pressure classes, giving a significant negative linear response to a gradient of the RPI. These methods can be used for further development of a standardised monitoring tool to assess the ecological status and trends in biological condition for streams of the whole country, considering its complex and diverse geology and climate.

2.
Nat Commun ; 14(1): 6289, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37813852

RESUMO

European rivers are disconnected by more than one million man-made barriers that physically limit aquatic species migration and contribute to modification of freshwater habitats. Here, a Conceptual Habitat Alteration Model for Ponding is developed to aid in evaluating the effects of impoundments on fish habitats. Fish communities present in rivers with low human impact and their broad environmental settings enable classification of European rivers into 15 macrohabitat types. These classifications, together with the estimated fish sensitivity to alteration of their habitat are used for assessing the impacts of six main barrier types (dams, weirs, sluices, culverts, fords, and ramps). Our results indicate that over 200,000 km or 10% of previously free-flowing river habitat has been altered due to impoundments. Although they appear less frequently, dams, weirs and sluices cause much more habitat alteration than the other types. Their impact is regionally diverse, which is a function of barrier height, type and density, as well as biogeographical location. This work allows us to foresee what potential environmental gain or loss can be expected with planned barrier management actions in rivers, and to prioritize management actions.


Assuntos
Ecossistema , Rios , Humanos , Animais , Água Doce , Europa (Continente) , Modelos Teóricos , Peixes
3.
Water Environ J ; 26(2): 261-273, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24899914

RESUMO

Running water ecosystems of Europe are affected by various human pressures. However, little is known about the prevalence, spatial patterns, interactions with natural environment and co-occurrence of pressures. This study represents the first high-resolution data analysis of human pressures at the European scale, where important pressure criteria for 9330 sampling sites in 14 European countries were analysed. We identified 15 criteria describing major anthropogenic degradation and combined these into a global pressure index by taking additive effects of multiple pressures into account. Rivers are affected by alterations of water quality (59%), hydrology (41%) and morphology (38%). Connectivity is disrupted at the catchment level in 85% and 35% at the river segment level. Approximately 31% of all sites are affected by one, 29% by two, 28% by three and 12% by four pressure groups; only 21% are unaffected. In total, 47% of the sites are multi-impacted. Approximately 90% of lowland rivers are impacted by a combination of all four pressure groups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA