RESUMO
Suspension cell culture and rigid commercial substrates are the most common methods to clinically manufacture therapeutic CAR-T cells ex vivo. However, suspension culture and nano/micro-scale commercial substrates poorly mimic the microenvironment where T cells naturally develop, leading to profound impacts on cell proliferation and phenotype. To overcome this major challenge, macro-scale substrates can be used to emulate that environment with higher precision. This work employed a biocompatible thermo-responsive material with tailored mechanical properties as a potential synthetic macro-scale scaffold to support T cell encapsulation and culture. Cell viability, expansion, and phenotype changes were assessed to study the effect of two thermo-responsive hydrogel materials with stiffnesses of 0.5 and 17 kPa. Encapsulated Pan-T and CAR-T cells were able to grow and physically behave similar to the suspension control. Furthermore, matrix stiffness influenced T cell behavior. In the softer polymer, T cells had higher activation, differentiation, and maturation after encapsulation obtaining significant cell numbers. Even when terpolymer encapsulation affected the CAR-T cell viability and expansion, CAR T cells expressed favorable phenotypical profiles, which was supported with cytokines and lactate production. These results confirmed the biocompatibility of the thermo-responsive hydrogels and their feasibility as a promising 3D macro-scale scaffold for in vitro T cell expansion that could potentially be used for cell manufacturing process.
RESUMO
Poly(methyl methacrylate) (PMMA) is considered an attractive substrate material for fabricating wearable skin sensors such as fitness bands and microfluidic devices. Despite its widespread use, inflammatory and allergic responses have been attributed to the use of this material. Therefore, the main objective of this study was to obtain a comprehensive understanding of potential biological effects triggered by PMMA at non-cytotoxic concentrations using in vitro models of NIH3T3 fibroblasts and reconstructed human epidermis (RhE). It was hypothesized that concentrations that do not reduce cell viability are sufficient to activate pathways of inflammatory processes in the skin. The study included cytotoxicity, cell metabolism, cytokine quantification, histopathological, and gene expression analyses. The NIH3T3 cell line was used as a testbed for screening cell toxicity levels associated with the concentration of PMMA with different molecular weights (MWs) (i.e., MW ~5,000 and ~15,000 g/mol). The lower MW of PMMA had a half-maximal inhibitory concentration (IC50 ) value of 5.7 mg/cm2 , indicating greater detrimental effects than the higher MW (IC50 = 14.0 mg/cm2 ). Non-cytotoxic concentrations of 3.0 mg/cm2 for MW ~15,000 g/mol and 0.9 mg/cm2 for MW ~5,000 g/mol) induced negative metabolic changes in NIH3T3 cells. Cell viability was severely reduced to 7% after the exposure to degradation by-products generated after thermal and photodegradation degradation of PMMA. PMMA at non-cytotoxic concentrations still induced overexpression of pro-inflammatory cytokines, chemokines, and growth factors (IL1B, CXCL10, CCL5, IL1R1, IL7, IL17A, VEGFA, FGF2, IFNG, IL15) on the RhE model. The inflammatory response was also supported by histopathological and gene expression analyses of PMMA-treated RhE, indicating tissue damage and gene overexpression. Results suggested that non-cytotoxic concentrations of PMMA (3.0 to 5.6 mg/cm2 for MW ~15,000 g/mol and 0.9 to 2.1 mg/cm2 for MW ~5,000 g/mol) were sufficient to negatively alter NIH3T3 cells metabolism and activate inflammatory events in the RhE skin.
Assuntos
Polimetil Metacrilato , Pele , Humanos , Camundongos , Animais , Polimetil Metacrilato/toxicidade , Células NIH 3T3 , Epiderme , Células Epidérmicas , CitocinasRESUMO
The use of tailored synthetic hydrogels for in vitro tissue culture and biomanufacturing provides the advantage of mimicking the cell microenvironment without issues of batch-to-batch variability. To that end, this work focused on the design, characterization, and preliminary evaluation of thermo-responsive, transparent synthetic terpolymers based on N-isopropylacrylamide, vinylphenylboronic acid, and polyethylene glycol for cell manufacturing and in vitro culture applications. Polymer physical properties were characterized by FT-IR, 1H-NMR, DLS, rheology, and thermal-gravimetric analysis. Tested combinations provided polymers with a lower critical solution temperature (LCST) between 30 and 45 °C. Terpolymer elastic/shear modulus varied between 0.3 and 19.1 kPa at 37 °C. Cellular characterization indicated low cell cytotoxicity on NIH-3T3. Experiments with the ovarian cancer model SKOV-3 and Jurkat T cells showed the terpolymers' capacity for cell encapsulation without interfering with staining or imaging protocols. In addition, cell growth and high levels of pluripotency demonstrated the capability of terpolymer to culture iPSCs. Characterization results confirmed a promising use of terpolymers as a tunable scaffold for cell culture applications.
RESUMO
In this work, we evaluate the enhancing effect of six bilayers of heparin/collagen (HEP/COL)6 layer-by-layer coatings on human Schwann cell (hSCs) adhesion and proliferation in the presence or absence of nerve growth factor (NGF). hSCs behavior and in vitro bioactivity were studied during six days of culture using end-point viability and proliferation assays as well as an impedance-based real-time monitoring system. An end-point viability assay revealed that hSCs cultured on the (HEP/COL)6 coatings increased their growth by more than 230% compared to controls. However, an EdU proliferation assay revealed that the proliferation rate of hSCs in all conditions were similar, with 45% of cells proliferating after 18 hours of incubation. Fluorescence microscopy revealed that hSCs spreading was similar between the tissue culture plastic control and the (HEP/COL)6. The presence of NGF in solution resulted in cells with a larger spread area. Real-time monitoring of hSCs seeded on (HEP/COL)6 with and without NGF reveals that initial cell adhesion is improved by the presence of the (HEP/COL)6 coatings, and it is further improved by the presence of NGF. Our results suggest that (HEP/COL)6 coatings enhance Schwann cell behavior and response to NGF. This simple modification could be applied to current nerve regeneration strategies to improve the repair of damaged nerve.
Assuntos
Materiais Revestidos Biocompatíveis/farmacologia , Colágeno/farmacologia , Heparina/farmacologia , Células de Schwann/efeitos dos fármacos , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Colágeno/química , Heparina/química , Humanos , Fator de Crescimento Neural/farmacologia , Ratos , Células de Schwann/citologiaRESUMO
The widespread distribution of fungal infections, with their high morbidity and mortality rate, is a global public health problem. The increase in the population of immunocompromised patients combined with the selectivity of currents treatments and the emergence of drug-resistant fungal strains are among the most imperative reasons to develop novel antifungal formulations. Antimicrobial ß-peptides are peptidomimetics of natural antimicrobial peptides (AMPs), which have been proposed as developmental platforms to enhance the AMPs selectivity and biostability. Their tunability allows the design of sequences with remarkable activity against a wide spectrum of microorganisms such as the human pathogenic Candida spp., both in planktonic and biofilm morphology. However, the ß-peptide's effect on surrounding host cells remains greatly understudied. Assessments have mainly relied on the extent of hemolysis that a candidate peptide is able to cause. This work investigated the in vitro cytotoxicity of various ß-peptides in the Caco-2 and HepG2 mammalian cell lines. Results indicated that the cytotoxic effect of the ß-peptides was influenced by cell type and was also correlated to structural features of the peptide such as hydrophobicity. We found that the selectivity of the most hydrophobic ß-peptide was 2-3 times higher than that of the least hydrophobic one, for both cell types according to the selectivity index parameter (IC50/MIC). The IC50 of Caco-2 and HepG2 increased with hydrophobicity, which indicates the importance of testing putative therapeutics on different cell types. We report evidence of peptide-cell membrane interactions in Caco-2 and HepG2 using a widely studied ß-peptide against C. albicans.
Assuntos
Antifúngicos/farmacologia , Células CACO-2 , Colo/efeitos dos fármacos , Células Hep G2 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fígado/efeitos dos fármacosRESUMO
[This corrects the article DOI: 10.1371/journal.pone.0149271.].
RESUMO
Iron oxide nanoparticles were coated with the biocompatible, biodegradable, non-immunogenic polysaccharide inulin by introduction of carboxyl groups into the inulin structure and conjugation with amine groups on the surface of iron oxide nanoparticles grafted with 3-aminopropyltriethoxysilane. The resulting nanoparticles were characterized by FT-IR spectroscopy, transmission electron microscopy, dynamic light scattering, zeta potential, SQUID magnetometry, and with respect to their energy dissipation rate in applied alternating magnetic fields. The nanoparticles had a hydrodynamic diameter in the range of 70 ± 10 nm and were superparamagnetic, with energy dissipation rates in the range of 58-175 W/g for an applied field frequency of 233 kHz and an applied field amplitude in the range of 20-48 kA/m. The nanoparticles were stable in a range of pH, at temperatures between 23°C and 53°C, and in short term storage in water, PBS, and culture media. The particles were non-cytotoxic to the immortalized human cancer cell lines Hey A8 FDR, A2780, MDA 468, MCF-7 and Caco-2. The nanoparticles were readily taken up by Caco-2 cells in a time and concentration dependent fashion, and were found to have a pharmacokinetic time constant of 47 ± 3 min. The small size, non-cytotoxicity, and efficient energy dissipation of the particles could make them useful for biomedical applications such as magnetic fluid hyperthermia.
RESUMO
Colloidal suspensions of iron oxide magnetic nanoparticles are known to dissipate energy when exposed to an oscillating magnetic field. Such energy dissipation can be employed to locally raise temperature inside a tumor between 41°C and 45°C (hyperthermia) to promote cell death, a treatment known as magnetic fluid hyperthermia (MFH). This work seeks to quantify differences between MFH and hot-water hyperthermia (HWH) in terms of reduction in cell viability using two cancer cell culture models, Caco-2 (human epithelial colorectal adenocarcinoma) and MCF-7 (human breast cancer). Magnetite nanoparticles were synthesized via the co-precipitation method and functionalized with adsorbed carboxymethyl dextran. Cytotoxicity studies indicated that in the absence of an oscillating magnetic field, cell viability was not affected at concentrations of up to 0.6 mg iron oxide/mL. MFH resulted in a significant decrease in cell viability when exposed to a magnetic field for 120 minutes and allowed to rest for 48 hours, compared with similar field applications, but with shorter resting time. The results presented here suggest that MFH most likely induces apoptosis in both cell types. When compared with HWH, MFH produced a significant reduction in cell viability, and these effects appear to be cell-type related.