Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003437

RESUMO

Measurements of skin surface biomarkers have enormous value for the detailed assessment of skin conditions, both for clinical application and in skin care. The main goals of the current study were to assess whether expression patterns of skin surface hBD-1, hBD-2, IL-1α, CXCL-1, and CXCL-8, examples of proteins known to be involved in psoriasis pathology, are associated with disease severity and whether expression patterns of these proteins on the skin surface can be used to measure pharmacodynamic effects of biological therapy. In this observational study using transdermal analysis patch (TAP), levels of skin surface IL-1α, hBD-1, hBD-2, CXCL-1/2, and CXCL-8 of psoriasis vulgaris (PV) patients over biological therapy were assessed. The Psoriasis Area Severity Index (PASI) and local score for erythema, induration, and desquamation were determined from the exact same skin area as FibroTx TAP measurements. Thirty-seven adult PV patients were included, of which twenty-three were subjected to anti-TNF-α, seven to anti-IL-17A, and seven to anti-IL12/IL-23 therapy. Significantly higher levels of hBD-1, hBD-2, CXCL-1/2, and CXCL-8 were detected on lesional skin compared to the non-lesional skin of the PV patients. In contrast, lower levels of IL-1α were found in lesional skin compared to non-lesional skin. In addition, we observed that the biomarker expression levels correlate with disease severity. Further, we confirmed that changes in the expression levels of skin surface biomarkers during biological therapy correlate with treatment response. Biomarker expression patterns in response to treatment differed somewhat between treatment subtypes. We observed that, in the case of anti-TNF-α therapy, an increase after a steady decrease in the expression levels of CXCL-1/2 and CXCL-8 occurred before the change in clinical scores. Moreover, response kinetics of skin surface proteins differs between the applied therapies-hBD2 expression responds quickly to anti-IL-17A therapy, CXCL-1/2 to anti-IL-12/23, and levels of CXCL-8 are rapidly down-regulated by IL-17A and IL-12/23 therapy. Our findings confirm that the skin surface hBD-2, IL-1α, CXCL-1/2, and CXCL-8 are markers for the psoriasis severity. Further, data obtained during this study give the basis for the conclusion that skin surface proteins CXCL-1/2 and CXCL-8 may have value as therapeutic biomarkers, thus confirming that measuring the 'molecular root' of inflammation appears to have value in scoring disease severity on its own.


Assuntos
Proteínas de Membrana , Psoríase , Adulto , Humanos , Proteínas de Membrana/metabolismo , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Pele/metabolismo , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Terapia Biológica , Interleucina-12/metabolismo , Biomarcadores/metabolismo
2.
Inorg Chem ; 57(5): 2570-2576, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29461047

RESUMO

Ag2[W6I14] and A2- x[W6I14] compounds with A = Na, Li were prepared from binary tungsten iodides (W3I12) and corresponding metal iodides. Their crystal structures are analyzed on the basis of X-ray diffraction data. 7Li and 23Na solid-state NMR measurements reveal that Li+ and Na+ ions are distributed over two sites in the respective structures. These results shed some new light on A x[M6I14] with A = alkali and M = Mo, W compounds being reported with x = 1 and 2, which exhibit photophysical properties. The lithium compound is an exception in the series of A2- x[W6I14] compounds, because it is the only compound which is soluble in water.

3.
ACS Nano ; 15(9): 14116-14124, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34387483

RESUMO

Degenerately doped metal-oxide nanocrystals (NCs) show localized surface plasmon resonances (LSPRs) that are tunable via their tunable excess charge-carrier densities. Modulation of excess charge carriers has also been used to control magnetism in colloidal doped metal-oxide NCs. The addition of excess delocalized conduction-band (CB) electrons can be achieved through aliovalent doping or by postsynthetic techniques such as electrochemistry or photodoping. Here, we examine the influence of charge-compensating aliovalent dopants on the potentials of excess CB electrons in free-standing colloidal degenerately doped oxide NCs, both experimentally and through modeling. Taking Sn4+:In2O3 (ITO) NCs as a model system, we use spectroelectrochemical techniques to examine differences between aliovalent doping and photodoping. We demonstrate that whereas photodoping introduces excess CB electrons by raising the Fermi level relative to the CB edge, aliovalent impurity substitution introduces excess CB electrons by stabilizing the CB edge relative to an externally defined Fermi level. Significant differences are thus observed electrochemically between spectroscopically similar delocalized CB electrons compensated by aliovalent dopants and those compensated by surface cations (e.g., protons) during photodoping. Theoretical modeling illustrates the very different potentials that arise from charge compensation via aliovalent substitution and surface charge compensation. Spectroelectrochemical titrations allow the ITO NC band-edge stabilization as a function of Sn4+ doping to be quantified. Extremely large capacitances are observed in both In2O3 and ITO NCs, making these NCs attractive for reversible charge-storage applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA