Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gene Ther ; 29(6): 390-397, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33753910

RESUMO

The development of high efficiency, central nervous system (CNS) targeting AAV-based gene therapies is necessary to address challenges in both pre-clinical and clinical investigations. The engineered capsids, AAV.PHP.B and AAV.PHP.eB, show vastly improved blood-brain barrier penetration compared to their parent serotype, AAV9, but with variable effect depending on animal system, strain, and delivery route. As most characterizations of AAV.PHP variants have been performed in mice, it is currently unknown whether AAV.PHP variants improve CNS targeting when delivered intrathecally in rats. We evaluated the comparative transduction efficiencies of equititer doses (6 × 1011vg) of AAV.PHP.eB-CAG-GFP and AAV9-CAG-GFP when delivered into the cisterna magna of 6-9-month old rats. Using both quantitative and qualitative assessments, we observed consistently superior biodistribution of GFP+ cells and fibers in animals treated with AAV.PHP.eB compared to those treated with AAV9. Enhanced GFP signal was uniformly observed throughout rostrocaudal brain regions in AAV.PHP.eB-treated animals with matching GFP protein expression detected in the forebrain, midbrain, and cerebellum. Collectively, these data illustrate the benefit of intracisternal infusions of AAV.PHP.eB as an optimal system to distribute CNS gene therapies in preclinical investigations of rats, and may have important translational implications for the clinical CNS targeting.


Assuntos
Cisterna Magna , Dependovirus , Animais , Sistema Nervoso Central , Cisterna Magna/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Camundongos , Ratos , Distribuição Tecidual , Transdução Genética
2.
Neurobiol Dis ; 134: 104619, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31669671

RESUMO

Intrabodies (both single-chain Fv and single-domain VH, VHH, and VL nanobodies) offer unique solutions to some of the challenges of delivery and target engagement posed by immunotherapeutics for the brain and other areas of the nervous system. The specificity, which includes the recognition of post-translational modifications, and capacity for engineering that characterize these antibody fragments can be especially well-focused when the genes encoding only the binding sites of the antibody are expressed intracellularly. Multifunctional constructs use fusions with peptides that can re-target antigen-antibody complexes to enhance both pharmacodynamic activity and intracellular solubility simultaneously. Fusions with proteolytic targeting signals, such as the PEST degron, greatly enhance potency in some cases. Stem cell transplants can be protected from exogenous misfolded proteins by stable transfection with intrabodies. Tandem expression to target two or more misfolding proteins in one treatment may be especially valuable for proteostatic disruptions due to genetic, aging, or toxic triggers. Advances in bioinformatics, screening protocols, and especially gene therapy are showing great promise for intrabody/ nanobody treatments of a full range of neurological disorders, including Alzheimer's disease and related tau dementias, Parkinson's disease and Lewy body diseases, Huntington's disease, amyotrophic lateral sclerosis, and prion diseases, among others.


Assuntos
Terapia Genética/métodos , Imunoterapia/métodos , Doenças Neurodegenerativas , Anticorpos de Domínio Único , Animais , Humanos
3.
Hum Mol Genet ; 24(21): 6186-97, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26307082

RESUMO

Immunotherapy, both active and passive, is increasingly recognized as a powerful approach to a wide range of diseases, including Alzheimer's and Parkinson's. Huntington's disease (HD), an autosomal dominant disorder triggered by misfolding of huntingtin (HTT) protein with an expanded polyglutamine tract, could also benefit from this approach. Individuals can be identified genetically at the earliest stages of disease, and there may be particular benefits to a therapy that can target peripheral tissues in addition to brain. In this active vaccination study, we first examined safety and immunogenicity for a broad series of peptide, protein and DNA plasmid immunization protocols, using fragment (R6/1), and knock-in (zQ175) models. No safety issues were found. The strongest and most uniform immune response was to a combination of three non-overlapping HTT Exon1 coded peptides, conjugated to KLH, delivered with alum adjuvant. An N586-82Q plasmid, delivered via gene gun, also showed ELISA responses, mainly in the zQ175 strain, but with more variability, and less robust responses in HD compared with wild-type controls. Transcriptome profiling of spleens from the triple peptide-immunized cohort showed substantial HD-specific differences including differential activation of genes associated with innate immune responses, absence of negative feedback control of gene expression by regulators, a temporal dysregulation of innate immune responses and transcriptional repression of genes associated with memory T cell responses. These studies highlight critical issues for immunotherapy and HD disease management in general.


Assuntos
Regulação da Expressão Gênica , Doença de Huntington/genética , Doença de Huntington/imunologia , Proteínas do Tecido Nervoso/imunologia , Proteínas Nucleares/imunologia , Vacinação , Sequência de Aminoácidos , Animais , Feminino , Hemocianinas , Proteína Huntingtina , Doença de Huntington/prevenção & controle , Memória Imunológica , Mediadores da Inflamação/metabolismo , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Fragmentos de Peptídeos/imunologia , Linfócitos T/imunologia , Transcrição Gênica , Regulação para Cima
4.
PLoS Genet ; 9(2): e1003280, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23468640

RESUMO

Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)∼100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases.


Assuntos
Doença de Huntington/genética , Proteínas/genética , Expansão das Repetições de Trinucleotídeos/genética , Repetições de Trinucleotídeos/genética , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Instabilidade Genômica , Humanos , Camundongos , Proteína 3 Homóloga a MutS , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Neostriado/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Polimorfismo Genético , Estabilidade Proteica
5.
Biochim Biophys Acta ; 1844(11): 1907-1919, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25194824

RESUMO

Protein misfolding disorders, including the neurodegenerative conditions Alzheimer's disease (AD) and Parkinson's disease (PD) represent one of the major medical challenges or our time. The underlying molecular mechanisms that govern protein misfolding and its links with disease are very complex processes, involving the formation of transiently populated but highly toxic molecular species within the crowded environment of the cell and tissue. Nevertheless, much progress has been made in understanding these events in recent years through innovative experiments and therapeutic strategies, and in this review we present an overview of the key roles of antibodies and antibody fragments in these endeavors. We discuss in particular how these species are being used in combination with a variety of powerful biochemical and biophysical methodologies, including a range of spectroscopic and microscopic techniques applied not just in vitro but also in situ and in vivo, both to gain a better understanding of the mechanistic nature of protein misfolding and aggregation and also to design novel therapeutic strategies to combat the family of diseases with which they are associated. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.

6.
Res Sq ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38585932

RESUMO

Alpha-synuclein (αSyn) aggregation and the formation of Lewy pathology (LP) is a foundational pathophysiological phenomenon in synucleinopathies. Delivering therapeutic single-chain and single-domain antibodies that bind pathogenic targets can disrupt intracellular aggregation. The fusion of antibody fragments to a negatively-charged proteasomal targeting motif (PEST) creates bifunctional constructs that enhance both solubility and turnover. With sequence-specific point mutations of PEST sequences that modulate proteasomal degradation efficiency, we report the creation of Programmable Target Antigen Proteolysis (PTAP) technology that can provide graded control over the levels of target antigens. We have previously demonstrated our lead anti-αSyn intrabody, VH14-PEST, is capable of reducing the pathological burden of synucleinopathy in vitro and in vivo. Here, we report a family of fully humanized VH14-PTAP constructs for controllable, therapeutic targeting of intracellular α-Syn. In cells, we demonstrate successful target engagement and efficacy of VH14-hPEST intrabodies, and validate proof-of-principle in human cells using 3D human organoids derived from PD-patient induced pluripotent stem cells (iPSC). In two synuclein-based rat models, PTAP intrabodies attenuated nigral αSyn pathology, preserved nigrostriatal dopaminergic tone, and slowed the propagation of αSyn pathology. These data demonstrate the potency of intracellular αSyn targeting as a method to alleviate pathology and highlight the potential clinical utility of PTAP intrabodies.

7.
Neurobiol Dis ; 41(1): 43-50, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20736066

RESUMO

Huntington's disease (HD) is a fatal autosomal dominant neurodegenerative disorder caused by an expansion of the polyglutamine (polyQ) repeat in exon-1 in the Huntingtin gene (HTT). This results in misfolding and accumulation of the huntingtin (htt) protein, forming nuclear and cytoplasmic inclusions. HD is associated with dysregulation of gene expression as well as mitochondrial dysfunction. We hypothesized that by improving transcriptional regulation of genes necessary for energy metabolism, the HD motor phenotype would also improve. We therefore examined the protective effects of nicotinamide (NAM), a well-characterized water-soluble B vitamin that is an inhibitor of sirtuin1/class III NAD(+)-dependent histone deacetylase (HDAC). In this study, both mini-osmotic pumps and drinking water deliveries were tested at 250 mg NAM/kg/day, using the B6.HDR6/1 transgenic mouse model. Results were similar for both modes of delivery, and there was no evidence of toxicity. We found that NAM treatment increased mRNA levels of brain-derived neurotrophic factor (BDNF), and Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), the master regulator of mitochondrial biogenesis. Protein levels of BDNF were also significantly increased. In addition, NAM treatment increased PGC-1α activation in HD mice, pointing to a possible mode of action as a therapeutic. Critically, NAM treatment was able to improve motor deficits associated with the HD phenotype, tested as time courses of open field, rotarod, and balance beam activities. These improvements were substantial, despite the fact that NAM did not appear to reduce htt aggregation, or to prevent late-stage weight loss. Our study therefore concludes that NAM or similar drugs may be beneficial in clinical treatment of the motor dysfunctions of HD, while additional therapeutic approaches must be added to combat the aggregation phenotype and overall physiological decline.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Doença de Huntington/tratamento farmacológico , Doenças Mitocondriais/tratamento farmacológico , Niacinamida/farmacologia , Transativadores/genética , Regulação para Cima/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Doença de Huntington/metabolismo , Doença de Huntington/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Niacinamida/uso terapêutico , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Transativadores/metabolismo , Fatores de Transcrição , Complexo Vitamínico B/farmacologia , Complexo Vitamínico B/uso terapêutico
9.
NPJ Parkinsons Dis ; 4: 25, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30155513

RESUMO

Therapeutics designed to target α-synuclein (α-syn) aggregation may be critical in halting the progression of pathology in Parkinson's disease (PD) patients. Nanobodies are single-domain antibody fragments that bind with antibody specificity, but allow readier genetic engineering and delivery. When expressed intracellularly as intrabodies, anti-α-syn nanobodies fused to a proteasome-targeting proline, aspartate or glutamate, serine, and threonine (PEST) motif can modulate monomeric concentrations of target proteins. Here we aimed to validate and compare the in vivo therapeutic potential of gene therapy delivery of two proteasome-directed nanobodies selectively targeting α-syn in a synuclein overexpression-based PD model: VH14*PEST (non-amyloid component region) and NbSyn87*PEST (C-terminal region). Stereotaxic injections of adeno-associated viral 5-α-syn (AAV5-α-syn) into the substantia nigra (SN) were performed in Sprague-Dawley rats that were sorted into three cohorts based on pre-operative behavioral testing. Rats were treated with unilateral SN injections of vectors for VH14*PEST, NbSyn87*PEST, or injected with saline 3 weeks post lesion. Post-mortem assessments of the SN showed that both nanobodies markedly reduced the level of phosphorylated Serine-129 α-syn labeling relative to saline-treated animals. VH14*PEST showed considerable maintenance of striatal dopaminergic tone in comparison to saline-treated and NbSyn87*PEST-treated animals as measured by tyrosine hydroxylase immunoreactivity (optical density), DAT immunoreactivity (optical density), and dopamine concentration (high-performance liquid chromatography). Microglial accumulation and inflammatory response, assessed by stereological counts of Iba-1-labeled cells, was modestly increased in NbSyn87*PEST-injected rats but not in VH14*PEST-treated or saline-treated animals. Modest behavioral rescue was also observed, although there was pronounced variability among individual animals. These data validate in vivo therapeutic efficacy of vector-delivered intracellular nanobodies targeting α-syn misfolding and aggregation in synucleinopathies such as PD.

11.
PLoS One ; 13(6): e0198154, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29874260

RESUMO

A critical issue in transgene delivery studies is immune reactivity to the transgene- encoded protein and its impact on sustained gene expression. Here, we test the hypothesis that immunomodulation by rapamycin can decrease immune reactivity after intrathecal AAV9 delivery of a transgene (GFP) in non-human primates, resulting in sustained GFP expression in the CNS. We show that rapamycin treatment clearly reduced the overall immunogenicity of the AAV9/GFP vector by lowering GFP- and AAV9-specific antibody responses, and decreasing T cell responses including cytokine and cytolytic effector responses. Spinal cord GFP protein expression was sustained for twelve weeks, with no toxicity. Immune correlates of robust transgene expression include negligible GFP-specific CD4 and CD8 T cell responses, absence of GFP-specific IFN-γ producing T cells, and absence of GFP-specific cytotoxic T cells, which support the hypothesis that decreased T cell reactivity results in sustained transgene expression. These data strongly support the use of modest doses of rapamycin to modulate immune responses for intrathecal gene therapies, and potentially a much wider range of viral vector-based therapeutics.


Assuntos
Sistema Nervoso Central/metabolismo , Dependovirus/genética , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/imunologia , Imunomodulação/fisiologia , Primatas/genética , Primatas/imunologia , Animais , Animais Geneticamente Modificados , Autoantígenos/imunologia , Sistema Nervoso Central/imunologia , Dependovirus/imunologia , Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos/imunologia , Macaca fascicularis , Distribuição Aleatória , Transdução Genética , Transgenes/imunologia
12.
Sci Rep ; 8(1): 17611, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30514850

RESUMO

Improving the affinity of protein-protein interactions is a challenging problem that is particularly important in the development of antibodies for diagnostic and clinical use. Here, we used structure-based computational methods to optimize the binding affinity of VHNAC1, a single-domain intracellular antibody (intrabody) from the camelid family that was selected for its specific binding to the nonamyloid component (NAC) of human α-synuclein (α-syn), a natively disordered protein, implicated in the pathogenesis of Parkinson's disease (PD) and related neurological disorders. Specifically, we performed ab initio modeling that revealed several possible modes of VHNAC1 binding to the NAC region of α-syn as well as mutations that potentially enhance the affinity between these interacting proteins. While our initial design strategy did not lead to improved affinity, it ultimately guided us towards a model that aligned more closely with experimental observations, revealing a key residue on the paratope and the participation of H4 loop residues in binding, as well as confirming the importance of electrostatic interactions. The binding activity of the best intrabody mutant, which involved just a single amino acid mutation compared to parental VHNAC1, was significantly enhanced primarily through a large increase in association rate. Our results indicate that structure-based computational design can be used to successfully improve the affinity of antibodies against natively disordered and weakly immunogenic antigens such as α-syn, even in cases such as ours where crystal structures are unavailable.


Assuntos
Anticorpos/imunologia , Afinidade de Anticorpos , Simulação de Acoplamento Molecular , Anticorpos de Cadeia Única/imunologia , alfa-Sinucleína/imunologia , Animais , Anticorpos/química , Anticorpos/genética , Camelidae , Humanos , Ligação Proteica , Anticorpos de Cadeia Única/genética
13.
Brain Res ; 1140: 179-87, 2007 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-16725123

RESUMO

Dystonia musculorum (dt) is an inherited autosomal recessive neuropathy in mice. Homozygous animals display primarily sensory neurodegeneration resulting in a severe loss of coordination. Several dt strains exist, including spontaneous mutants dt-Alb (Albany), dt-J (Jackson Labs), and dt-Frk (Frankel), and a transgene insertion mutant, Tg4. They contain mutations in the gene encoding Bullous Pemphigoid Antigen 1 (BPAG1), or dystonin. BPAG1 is a member of the plakin family of cytolinker proteins. BPAG1 is alternatively spliced to produce several isoforms, including the major brain-specific isoform, BPAG1a. The neurological phenotype observed in dt-Alb mice is thought to result from the absence of BPAG1a protein in the developing nervous system. The goal of this study was to determine the precise molecular nature of the dt-Alb mutation and examine residual BPAG1 expression in homozygous dt-Alb mice. A combination of molecular biological strategies revealed that the dt-Alb lesion is a deletion-insertion eliminating a large part of the coding region of BPAG1a. The molecular lesion in the dt-Alb BPAG1 allele is expected to render it completely non-functional. Although transcripts corresponding to BPAG1 segments still remaining in homozygous dt-Alb mice could be detected by RT-PCR, there was no positive signal for BPAG1 in the brain of dt-Alb mice by Northern blotting. Western blotting with polyclonal anti-BPAG1 antibodies confirmed the absence of functional BPAG1 protein (full-length or truncated) in the dt-Alb brain. Our identification of the 5' junction of the dt-Alb insertion makes it possible to genotype dt-Alb animals by standard PCR.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Animais , Encéfalo/metabolismo , Distonina , Expressão Gênica/genética , Genótipo , Camundongos , Camundongos Mutantes Neurológicos , Camundongos Transgênicos , Biologia Molecular/métodos , Fenótipo , RNA Mensageiro/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
14.
BioDrugs ; 20(6): 327-33, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17176119

RESUMO

Single-chain Fv and single-domain antibodies retain the binding specificity of full-length antibodies but they can be cloned, selected, engineered, and manipulated as genes. When expressed intracellularly in mammalian cells these intracellular antibodies, or intrabodies, have the potential to alter the folding, interactions, modifications, or subcellular localization of their targets. These reagents have previously been developed as therapeutics against cancer and HIV. Since misfolded and accumulated intracellular proteins characterize several major neurodegenerative disorders, including Huntington disease (HD) and Parkinson disease, these disorders are prime candidates for intrabody therapy. In this article we review the extension of intrabody technology to the nervous system. Studies of HD have been used to develop the approach and anti-synuclein strategies are in the early stages of development. Such neurodegenerative diseases are therefore poised for engineered antibody approaches, which can provide a pipeline of novel therapeutics and new drug discovery tools.


Assuntos
Anticorpos/imunologia , Anticorpos/uso terapêutico , Doença de Huntington/imunologia , Doença de Huntington/terapia , Imunoterapia , Doença de Parkinson/imunologia , Doença de Parkinson/terapia , Animais , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Imunoterapia/tendências , Doença de Parkinson/genética , Doença de Parkinson/patologia
15.
PLoS One ; 11(11): e0165964, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27824888

RESUMO

Misfolding, abnormal accumulation, and secretion of α-Synuclein (α-Syn) are closely associated with synucleinopathies, including Parkinson's disease (PD). VH14 is a human single domain intrabody selected against the non-amyloid component (NAC) hydrophobic interaction region of α-Syn, which is critical for initial aggregation. Using neuronal cell lines, we show that as a bifunctional nanobody fused to a proteasome targeting signal, VH14PEST can counteract heterologous proteostatic effects of mutant α-Syn on mutant huntingtin Exon1 and protect against α-Syn toxicity using propidium iodide or Annexin V readouts. We compared this anti-NAC candidate to NbSyn87, which binds to the C-terminus of α-Syn. NbSyn87PEST degrades α-Syn as well or better than VH14PEST. However, while both candidates reduced toxicity, VH14PEST appears more effective in both proteostatic stress and toxicity assays. These results show that the approach of reducing intracellular monomeric targets with novel antibody engineering technology should allow in vivo modulation of proteostatic pathologies.


Assuntos
Proteínas Amiloidogênicas/imunologia , alfa-Sinucleína/química , Animais , Western Blotting , Linhagem Celular , Citometria de Fluxo , Humanos , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos , Anticorpos de Domínio Único , Células-Tronco , Transfecção , alfa-Sinucleína/imunologia , alfa-Sinucleína/fisiologia
16.
MAbs ; 8(8): 1425-1434, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27557809

RESUMO

Antibody Engineering & Therapeutics, the largest meeting devoted to antibody science and technology and the annual meeting of The Antibody Society, will be held in San Diego, CA on December 11-15, 2016. Each of 14 sessions will include six presentations by leading industry and academic experts. In this meeting preview, the session chairs discuss the relevance of their topics to current and future antibody therapeutics development. Session topics include bispecifics and designer polyclonal antibodies; antibodies for neurodegenerative diseases; the interface between passive and active immunotherapy; antibodies for non-cancer indications; novel antibody display, selection and screening technologies; novel checkpoint modulators / immuno-oncology; engineering antibodies for T-cell therapy; novel engineering strategies to enhance antibody functions; and the biological Impact of Fc receptor engagement. The meeting will open with keynote speakers Dennis R. Burton (The Scripps Research Institute), who will review progress toward a neutralizing antibody-based HIV vaccine; Olivera J. Finn, (University of Pittsburgh School of Medicine), who will discuss prophylactic cancer vaccines as a source of therapeutic antibodies; and Paul Richardson (Dana-Farber Cancer Institute), who will provide a clinical update on daratumumab for multiple myeloma. In a featured presentation, a representative of the World Health Organization's INN expert group will provide a perspective on antibody naming. "Antibodies to watch in 2017" and progress on The Antibody Society's 2016 initiatives will be presented during the Society's special session. In addition, two pre-conference workshops covering ways to accelerate antibody drugs to the clinic and the applications of next-generation sequencing in antibody discovery and engineering will be held on Sunday December 11, 2016.


Assuntos
Anticorpos , Engenharia de Proteínas/métodos , Animais , Anticorpos/uso terapêutico , Humanos
17.
J Mol Biol ; 342(3): 901-12, 2004 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-15342245

RESUMO

Intracellular antibodies (intrabodies) provide an attractive means for manipulating intracellular protein function, both for research and potentially for therapy. A challenge in the isolation of effective intrabodies is the ability to find molecules that exhibit sufficient binding affinity and stability when expressed in the reducing environment of the cytoplasm. Here, we have used yeast surface display of proteins to isolate novel scFv clones against huntingtin from a non-immune human antibody library. We then applied yeast surface display to affinity mature this scFv pool and analyze the location of the binding site of the mutant with the highest affinity. Interestingly, the paratope was mapped exclusively to the variable light chain domain of the scFv. A single domain antibody was constructed consisting solely of this variable light chain domain, and was found to retain full binding activity to huntingtin. Cytoplasmic expression levels in yeast of the single domain were at least fivefold higher than the scFv. The ability of the single-domain intrabody to inhibit huntingtin aggregation, which has been implicated in the pathogenesis of Huntington's disease (HD), was confirmed in a cell-free in vitro assay as well as in a mammalian cell culture model of HD. Significantly, a single-domain intrabody that is functionally expressable in the cytoplasm was derived from a non-functional scFv by performing affinity maturation and binding site analysis on the yeast cell surface, despite the differences between the cytoplasmic and extracellular environment. This approach may find application in the development of intrabodies to a wide variety of intracellular targets.


Assuntos
Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/genética , Região Variável de Imunoglobulina/química , Região Variável de Imunoglobulina/genética , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/imunologia , Proteínas Nucleares/química , Proteínas Nucleares/imunologia , Sequência de Aminoácidos , Regiões Determinantes de Complementaridade , Humanos , Proteína Huntingtina , Técnicas In Vitro , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Biblioteca de Peptídeos , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Saccharomyces cerevisiae/genética
18.
J Mol Biol ; 427(12): 2166-78, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25861763

RESUMO

Huntington's disease is triggered by misfolding of fragments of mutant forms of the huntingtin protein (mHTT) with aberrant polyglutamine expansions. The C4 single-chain Fv antibody (scFv) binds to the first 17 residues of huntingtin [HTT(1-17)] and generates substantial protection against multiple phenotypic pathologies in situ and in vivo. We show in this paper that C4 scFv inhibits amyloid formation by exon1 fragments of huntingtin in vitro and elucidate the structural basis for this inhibition and protection by determining the crystal structure of the complex of C4 scFv and HTT(1-17). The peptide binds with residues 3-11 forming an amphipathic helix that makes contact with the antibody fragment in such a way that the hydrophobic face of this helix is shielded from the solvent. Residues 12-17 of the peptide are in an extended conformation and interact with the same region of another C4 scFv:HTT(1-17) complex in the asymmetric unit, resulting in a ß-sheet interface within a dimeric C4 scFv:HTT(1-17) complex. The nature of this scFv-peptide complex was further explored in solution by high-resolution NMR and physicochemical analysis of species in solution. The results provide insights into the manner in which C4 scFv inhibits the aggregation of HTT, and hence into its therapeutic potential, and suggests a structural basis for the initial interactions that underlie the formation of disease-associated amyloid fibrils by HTT.


Assuntos
Amiloide/química , Amiloide/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/metabolismo , Amiloide/antagonistas & inibidores , Fenômenos Químicos , Cristalografia por Raios X , Humanos , Proteína Huntingtina , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Proteínas do Tecido Nervoso/antagonistas & inibidores , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína
19.
Brain Res Mol Brain Res ; 121(1-2): 141-5, 2004 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-14969746

RESUMO

Huntington's disease (HD) is a progressive, hereditary, neurodegenerative disorder caused by an expanded polyglutamine tract in huntingtin protein, leading to misfolding and abnormal protein-protein interactions. Reducing the initial misfolding should lead to decreased pathogenesis. We show that malonate stress increases the number of dead or dying cells when organotypic slice cultures are transduced to express pathological-length huntingtin fragments. Co-transfected anti-HD single-chain Fv (sFv) intrabodies can reverse this HD-specific increase in malonate-induced morbidity.


Assuntos
Doença de Huntington/terapia , Região Variável de Imunoglobulina/uso terapêutico , Linfocinas/uso terapêutico , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Sialoglicoproteínas/uso terapêutico , Animais , Animais Recém-Nascidos , Biolística/métodos , Agregação Celular/efeitos dos fármacos , Contagem de Células , Morte Celular/efeitos dos fármacos , Corpo Estriado/metabolismo , Técnicas de Cultura , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Proteínas de Fluorescência Verde , Proteína Huntingtina , Doença de Huntington/induzido quimicamente , Doença de Huntington/genética , Região Variável de Imunoglobulina/imunologia , Proteínas Luminescentes/metabolismo , Malonatos/toxicidade , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Peptídeos , Propídio/metabolismo , Fatores de Tempo , Transfecção
20.
Behav Neurosci ; 117(6): 1233-42, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14674843

RESUMO

The Huntington's disease R6/2 transgenic mouse model, containing exon 1 of the human huntingtin gene with a greatly increased CAG repeat length, shows multiple effects of the altered polyglutamine in the resultant protein. The authors report that exploratory and fear conditioning behavioral changes appear well before the onset of obvious pathology. The first differences in exploratory and fear conditioning behavior emerge by 4 and 5 weeks of age, respectively. These behaviors correlate with the earliest neurochemical and molecular changes previously reported and provide insight into functional mechanisms by which cellular and subcellular disease changes may mediate neurological symptoms. These studies provide behavioral protocols suitable for high-throughput screening of therapeutic agents.


Assuntos
Condicionamento Clássico/fisiologia , Comportamento Exploratório/fisiologia , Medo/fisiologia , Doença de Huntington/fisiopatologia , Fatores Etários , Análise de Variância , Animais , Estudos Transversais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Atividade Motora/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA