RESUMO
OBJECTIVE: The School Inner-City Asthma Intervention Study 2 (SICAS 2) tested interventions to reduce exposures in classrooms of students with asthma. The objective of this post-hoc analysis was limited to evaluating the effect of high-efficiency particulate (HEPA) filtration interventions on mold levels as quantified using the Environmental Relative Moldiness Index (ERMI) and the possible improvement in the students' asthma, as quantified by spirometry testing. METHODS: Pre-intervention dust samples were collected at the beginning of the school year from classrooms and corresponding homes of students with asthma (n = 150). Follow-up dust samples were collected in the classrooms at the end of the HEPA or Sham intervention. For each dust sample, ERMI values and the Group 1 and Group 2 mold levels (components of the ERMI metric) were quantified. In addition, each student's lung function was evaluated by spirometry testing, specifically the percentage predicted forced expiratory volume at 1 sec (FEV1%), before and at the end of the intervention. RESULTS: For those students with a higher Group 1 mold level in their pre-intervention classroom than home (n = 94), the FEV1% results for those students was significantly (p < 0.05) inversely correlated with the Group 1 level in their classrooms. After the HEPA intervention, the average Group 1 and ERMI values were significantly lowered, and the average FEV1% test results significantly increased by an average of 4.22% for students in HEPA compared to Sham classrooms. CONCLUSIONS: HEPA intervention in classrooms reduced Group 1 and ERMI values, which corresponded to improvements in the students' FEV1% test results.
Assuntos
Poluição do Ar em Ambientes Fechados , Asma , Humanos , Asma/terapia , Habitação , Poeira/análise , Fungos , Espirometria , Poluição do Ar em Ambientes Fechados/prevenção & controle , Poluição do Ar em Ambientes Fechados/análiseRESUMO
We conducted a randomized trial of portable HEPA air cleaners in the homes of children age 6-12 years with asthma in the Yakima Valley, Washington. All families received asthma education while intervention families also received two HEPA cleaners (child's bedroom, living room). We collected 14-day integrated samples of endotoxin in settled dust and PM10 and PM10-2.5 in the air of the children's bedrooms at baseline and one-year follow-up, and used linear regression to compare follow-up levels, adjusting for baseline. Seventy-one families (36 HEPA, 35 control) completed the study. Baseline geometric mean (GSD) endotoxin loadings were 1565 (6.3) EU/m2 and 2110 (4.9) EU/m2 , respectively, in HEPA vs. control homes while PM10 and PM10-2.5 were 22.5 (1.9) µg/m3 and 9.5 (2.9) µg/m3 , respectively, in HEPA homes, and 19.8 (1.8) µg/m3 and 7.7 (2.0) µg/m3 , respectively, in control homes. At follow-up, HEPA families had 46% lower (95% CI, 31%-57%) PM10 on average than control families, consistent with prior studies. In the best-fit heterogeneous slopes model, HEPA families had 49% (95% CI, 6%-110%) and 89% lower (95% CI, 28%-177%) PM10-2.5 at follow-up, respectively, at 50th and 75th percentile baseline concentrations. Endotoxin loadings did not differ significantly at follow-up (4% lower, HEPA homes; 95% CI, -87% to 50%).
Assuntos
Poluição do Ar em Ambientes Fechados , Asma , Ar Condicionado , Asma/prevenção & controle , Criança , Endotoxinas , Humanos , Material ParticuladoRESUMO
Importance: School and classroom allergens and particles are associated with asthma morbidity, but the benefit of environmental remediation is not known. Objective: To determine whether use of a school-wide integrated pest management (IPM) program or high-efficiency particulate air (HEPA) filter purifiers in the classrooms improve asthma symptoms in students with active asthma. Design, Setting, and Participants: Factorial randomized clinical trial of a school-wide IPM program and HEPA filter purifiers in the classrooms was conducted from 2015 to 2020 (School Inner-City Asthma Intervention Study). There were 236 students with active asthma attending 41 participating urban elementary schools located in the Northeastern US who were randomized to IPM by school and HEPA filter purifiers by classroom. The date of final follow-up was June 20, 2020. Interventions: The school-wide IPM program consisted of application of rodenticide, sealing entry points, trap placement, targeted cleaning, and brief educational handouts for school staff. Infestation was assessed every 3 months, with additional treatments as needed. Control schools received no IPM, cleaning, or education. Classroom portable HEPA filter purifiers were deployed and the filters were changed every 3 months. Control classrooms received sham HEPA filters that looked and sounded like active HEPA filter purifiers. Randomization was done independently (split-plot design), with matching by the number of enrolled students to ensure a nearly exact 1:1 student ratio for each intervention with 118 students randomized to each group. Participants, investigators, and those assessing outcomes were blinded to the interventions. Main Outcomes and Measures: The primary outcome was the number of symptom-days with asthma during a 2-week period. Symptom-days were assessed every 2 months during the 10 months after randomization. Results: Among the 236 students who were randomized (mean age, 8.1 [SD, 2.0] years; 113 [48%] female), all completed the trial. At baseline, the 2-week mean was 2.2 (SD, 3.9) symptom-days with asthma and 98% of the classrooms had detectable levels of mouse allergen. The results were pooled because there was no statistically significant difference between the 2 interventions (P = .18 for interaction). During a 2-week period, the mean was 1.5 symptom-days with asthma after use of the school-wide IPM program vs 1.9 symptom-days after no IPM across the school year (incidence rate ratio, 0.71 [95% CI, 0.38-1.33]), which was not statistically significantly different. During a 2-week period, the mean was 1.6 symptom-days with asthma after use of HEPA filter purifiers in the classrooms vs 1.8 symptom-days after use of sham HEPA filter purifiers across the school year (incidence rate ratio, 1.47 [95% CI, 0.79-2.75]), which was not statistically significantly different. There were no intervention-related adverse events. Conclusions and Relevance: Among children with active asthma, use of a school-wide IPM program or classroom HEPA filter purifiers did not significantly reduce symptom-days with asthma. However, interpretation of the study findings may need to consider allergen levels, particle exposures, and asthma symptoms at baseline. Trial Registration: ClinicalTrials.gov Identifier: NCT02291302.
Assuntos
Filtros de Ar , Poluição do Ar em Ambientes Fechados/prevenção & controle , Asma/prevenção & controle , Exposição Ambiental/prevenção & controle , Controle de Roedores , Instituições Acadêmicas , Poluição do Ar em Ambientes Fechados/efeitos adversos , Alérgenos/análise , Criança , Exposição Ambiental/efeitos adversos , Feminino , Humanos , Masculino , RodenticidasRESUMO
BACKGROUND: Cooks exposed to biomass fuel experience increased risk of respiratory disease and mortality. We sought to characterize lung function and environmental exposures of primary cooking women using two fuel-types in southeastern India, as well as to investigate the effect of particulate matter (PM) from kitchens on human airway epithelial (HAE) cells in vitro. METHODS: We assessed pre- and post-bronchodilator lung function on 25 primary female cooks using wood biomass or liquified petroleum gas (LPG), and quantified exposures from 34 kitchens (PM2.5, PM < 40 µm, black carbon, endotoxin, and PM metal and bacterial content). We then challenged HAE cells with PM, assessing its cytotoxicity to small-airway cells (A549) and its effect on: transepithelial conductance and macromolecule permeability (NuLi cells), and antimicrobial activity (using airway surface liquid, ASL, from primary HAE cells). RESULTS: Lung function was impaired in cooks using both fuel-types. 60% of participants in both fuel-types had respiratory restriction (post bronchodilator FEV1/FVC>90). The remaining 40% in the LPG group had normal spirometry (post FEV1/FVC = 80-90), while only 10% of participants in the biomass group had normal spirometry, and the remaining biomass cooks (30%) had respiratory obstruction (post FEV1/FVC<80). Significant differences were found in environmental parameters, with biomass kitchens containing greater PM2.5, black carbon, zirconium, arsenic, iron, vanadium, and endotoxin concentrations. LPG kitchens tended to have more bacteria (p = 0.14), and LPG kitchen PM had greater sulphur concentrations (p = 0.02). In vitro, PM induced cytotoxicity in HAE A549 cells in a dose-dependent manner, however the effect was minimal and there were no differences between fuel-types. PM from homes of participants with a restrictive physiology increased electrical conductance of NuLi HAE cells (p = 0.06) and decreased macromolar permeability (p ≤ 0.05), while PM from homes of those with respiratory obstruction tended to increase electrical conductance (p = 0.20) and permeability (p = 0.07). PM from homes of participants with normal spirometry did not affect conductance or permeability. PM from all homes tended to inhibit antimicrobial activity of primary HAE cell airway surface liquid (p = 0.06). CONCLUSIONS: Biomass cooks had airway obstruction, and significantly greater concentrations of kitchen environmental contaminants than LPG kitchens. PM from homes of participants with respiratory restriction and obstruction altered airway cell barrier function, elucidating mechanisms potentially responsible for respiratory phenotypes observed in biomass cooks.
Assuntos
Poluição do Ar em Ambientes Fechados , Petróleo , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , Biomassa , Culinária , Feminino , Humanos , Índia , Pulmão/química , Material Particulado/análise , Material Particulado/toxicidadeRESUMO
Endotoxin exacerbates asthma. We designed the Louisa Environmental Intervention Project (LEIP) and assessed its effectiveness in reducing household endotoxin and improving asthma symptoms in rural Iowa children. Asthmatic school children (N = 104 from 89 homes) of Louisa and Keokuk counties in Iowa (aged 5-14 years) were recruited and block-randomized to receive extensive (education + professional cleaning) or educational interventions. Environmental sampling collection and respiratory survey administration were done at baseline and during three follow-up visits. Mixed-model analyses were used to assess the effect of the intervention on endotoxin levels and asthma symptoms in the main analysis and of endotoxin reduction on asthma symptoms in exploratory analysis. In the extensive intervention group, dust endotoxin load was significantly reduced in post-intervention visits. The extensive compared with the educational intervention was associated with significantly decreased dust endotoxin load in farm homes and less frequent nighttime asthma symptoms. In exploratory analysis, dust endotoxin load reduction from baseline was associated with lower total asthma symptoms score (Odds ratio: 0.52, 95% confidence interval: 0.29-0.92). In conclusion, the LEIP intervention reduced household dust endotoxin and improved asthma symptoms. However, endotoxin reductions were not sustained post-intervention by residents.
Assuntos
Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Asma/epidemiologia , Endotoxinas/análise , Exposição Ambiental/estatística & dados numéricos , Adolescente , Poluição do Ar em Ambientes Fechados/prevenção & controle , Asma/prevenção & controle , Criança , Pré-Escolar , Descontaminação/métodos , Exposição Ambiental/prevenção & controle , Feminino , Humanos , Iowa/epidemiologia , Masculino , População Rural/estatística & dados numéricosRESUMO
BACKGROUND: The Amish and Hutterites are U.S. agricultural populations whose lifestyles are remarkably similar in many respects but whose farming practices, in particular, are distinct; the former follow traditional farming practices whereas the latter use industrialized farming practices. The populations also show striking disparities in the prevalence of asthma, and little is known about the immune responses underlying these disparities. METHODS: We studied environmental exposures, genetic ancestry, and immune profiles among 60 Amish and Hutterite children, measuring levels of allergens and endotoxins and assessing the microbiome composition of indoor dust samples. Whole blood was collected to measure serum IgE levels, cytokine responses, and gene expression, and peripheral-blood leukocytes were phenotyped with flow cytometry. The effects of dust extracts obtained from Amish and Hutterite homes on immune and airway responses were assessed in a murine model of experimental allergic asthma. RESULTS: Despite the similar genetic ancestries and lifestyles of Amish and Hutterite children, the prevalence of asthma and allergic sensitization was 4 and 6 times as low in the Amish, whereas median endotoxin levels in Amish house dust was 6.8 times as high. Differences in microbial composition were also observed in dust samples from Amish and Hutterite homes. Profound differences in the proportions, phenotypes, and functions of innate immune cells were also found between the two groups of children. In a mouse model of experimental allergic asthma, the intranasal instillation of dust extracts from Amish but not Hutterite homes significantly inhibited airway hyperreactivity and eosinophilia. These protective effects were abrogated in mice that were deficient in MyD88 and Trif, molecules that are critical in innate immune signaling. CONCLUSIONS: The results of our studies in humans and mice indicate that the Amish environment provides protection against asthma by engaging and shaping the innate immune response. (Funded by the National Institutes of Health and others.).
Assuntos
Agricultura , Asma/imunologia , Exposição Ambiental , Imunidade Inata , Proteínas Adaptadoras de Transporte Vesicular/deficiência , Adolescente , Animais , Asma/epidemiologia , Criança , Cristianismo , Estudos Transversais , Citocinas/sangue , Modelos Animais de Doenças , Poeira/imunologia , Feminino , Expressão Gênica , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Imunoglobulina E/sangue , Contagem de Leucócitos , Leucócitos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Modelos Animais , Fator 88 de Diferenciação Mieloide/deficiência , PrevalênciaRESUMO
BACKGROUND: Patients with inflammatory bowel disease have higher incidence of airway hyperresponsiveness compared to the general population. Lung inflammation leading to airway hyperresponsiveness causes illnesses for more than ten percent of the population in USA. AIMS: We investigated the lung response to bacterial endotoxin in colitic mice. METHODS: Rag-1 mice were transplanted with negatively selected splenic T cells. Some mice groups were treated with NSAID to develop colitis. All mice were treated with bacterial endotoxin and necropsied 3 weeks later. RESULTS: Colitic mice developed intensified lung inflammation on day 21 of treatment with bacterial endotoxin. Pulmonary lymphocytes from colitic mice displayed a proinflammatory cytokine profile, expressed high ICAM1 and low FoxP3. CD11c+, CD8+ cells bound and responded to non-systemic antigens from gut-localized microbiota and had higher expression of TLR4. CONCLUSIONS: Colitic mice developed exacerbated lung inflammation in response to bacterial endotoxin compared to non-colitic mice. Proinflammatory cytokines from pulmonary lymphocytes induced high expression of ICAM1 and suppressed FoxP3 on CD4+ cells. CD11c+, CD8+ cells binding and responding to gut-localized antigens as well as high expression of TLR4 indicate innate and adaptive lung response to bacterial endotoxin. Inflammatory cells from colons of colitic mice homed in the lungs as well as the intestine suggesting recirculation of sensitized immunocompetent cells. These data support our hypothesis that colitis intensifies lung inflammation.
Assuntos
Colite/complicações , Pulmão/imunologia , Hipersensibilidade Respiratória/etiologia , Animais , Movimento Celular , Colite/imunologia , Citocinas/metabolismo , Endotoxinas , Feminino , Fatores de Transcrição Forkhead/metabolismo , Helmintos , Molécula 1 de Adesão Intercelular/metabolismo , Pulmão/patologia , Linfócitos/metabolismo , Camundongos Endogâmicos C57BL , Receptor 4 Toll-Like/metabolismoRESUMO
RATIONALE: Inhaled endotoxin induces airway inflammation and is an established risk factor for asthma. The 2005-2006 National Health and Nutrition Examination Survey included measures of endotoxin and allergens in homes as well as specific IgE to inhalant allergens. OBJECTIVES: To understand the relationships between endotoxin exposure, asthma outcomes, and sensitization status for 15 aeroallergens in a nationally representative sample. METHODS: Participants were administered questionnaires in their homes. Reservoir dust was vacuum sampled to generate composite bedding and bedroom floor samples. We analyzed 7,450 National Health and Nutrition Examination Survey dust and quality assurance samples for their endotoxin content using extreme quality assurance measures. Data for 6,963 subjects were available, making this the largest study of endotoxin exposure to date. Log-transformed endotoxin concentrations were analyzed using logistic models and forward stepwise linear regression. Analyses were weighted to provide national prevalence estimates and unbiased variances. MEASUREMENTS AND MAIN RESULTS: Endotoxin exposure was significantly associated with wheeze in the past 12 months, wheeze during exercise, doctor and/or emergency room visits for wheeze, and use of prescription medications for wheeze. Models adjusted for age, sex, race and/or ethnicity, and poverty-to-income ratio and stratified by allergy status showed that these relationships were not dependent upon sensitization status but were worsened among those living in poverty. Significant predictors of higher endotoxin exposures were lower family income; Hispanic ethnicity; participant age; dog(s), cat(s), cockroaches, and/or smoker(s) in the home; and carpeted floors. CONCLUSIONS: In this U.S. nationwide representative sample, higher endotoxin exposure was significantly associated with measures of wheeze, with no observed protective effect regardless of sensitization status.
Assuntos
Asma/epidemiologia , Asma/imunologia , Endotoxinas/imunologia , Adolescente , Adulto , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Alérgenos/imunologia , Criança , Feminino , Humanos , Imunoglobulina E/imunologia , Masculino , Prevalência , Fatores de Risco , Estados Unidos , Adulto JovemRESUMO
Electrostatic Dust Collectors (EDCs) are in use for passive sampling of bioaerosols, but particular aspects of their performance have not yet been evaluated. This study investigated the effect of mailing EDCs on endotoxin loading and the effect of EDC deployment in front of, and away from, heated ventilation on endotoxin sampling. Endotoxin sampling efficiency of heated and unheated EDC cloths was also evaluated. Cross-country express mailing of dust-spiked EDCs yielded no significant changes in endotoxin concentrations compared to dust-only samples for both high-spiked EDCs (p = 0.30) and low-spiked EDCs (p = 0.36). EDCs were also deployed in 20 identical apartments with one EDC placed in front of the univent heater in each apartment and contemporaneous EDC placed on the built-in bookshelf in each apartment. The endotoxin concentrations were significantly different (p = 0.049) indicating that the placement of EDC does impact endotoxin sampling. Heated and unheated EDCs were deployed for 7 days in pairs in farm homes. There was a significant difference between endotoxin concentrations (p = 0.027) indicating that heating EDCs may diminish their electrostatic capabilities and impact endotoxin sampling. The last study investigated the electrostatic charge of 12 heated and 12 unheated EDC cloths. There was a significant difference in charge (p = 0.009) which suggests that heating EDC cloths may make them less effective for sampling. In conclusion, EDCs can be mailed to and from deployment sites, EDC placement in relationship to ventilation is crucial, and heating EDCs reduces their electrostatic charge which may diminish their endotoxin sampling capabilities.
Assuntos
Poeira/análise , Endotoxinas/análise , Monitoramento Ambiental/instrumentação , Temperatura Alta , Agricultura , Poluição do Ar em Ambientes Fechados/análise , Exposição Ambiental/análise , Calefação , Habitação , Iowa , Serviços Postais , Eletricidade EstáticaRESUMO
The electrostatic dust collector (EDC) is a passive dust sampling device for exposure assessment of airborne endotoxin and possibly allergens. EDCs consist of a non-conducting plastic folder holding two or four electrostatic cloths of defined area. The sampling time needed to achieve detectable and reproducible loading for bioaerosols has not been systematically evaluated. Thus, in 15 Iowa farm homes EDCs were deployed for 7-, 14-, and 28-day sampling periods to determine if endotoxin and allergens could be quantified and if loading rates were uniform over time, i.e. if loads doubled from 7 to 14 days or 14 to 28 days and quadrupled from 7 to 28 days. Loadings between left and right paired EDC cloths were not significantly different and were highly correlated for endotoxin, total protein, and cat (Fel d1), dog (Can f1), and mouse (Mus m1) allergens (P < 0.001). EDCs performed especially well for endotoxin sampling with close agreement between paired samples (Pearson r = 0.96, P < 0.001). Endotoxin loading of the EDCs doubled from 7- to 14-day deployments as hypothesized although the loading rate decreased from 14 to 28 days of sampling with only a 1.38-fold increase. Allergen exposure assessment using EDCs was overall less satisfactory. Although there was reasonable agreement between paired samples, only exposures to cat, dog, and mouse allergens were reliable and these only at the longer deployment times.
Assuntos
Alérgenos/análise , Poeira/análise , Endotoxinas/análise , Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Poluição do Ar em Ambientes Fechados/análise , Alérgenos/imunologia , Animais , Gatos , Cães , Habitação , Humanos , Iowa , Camundongos , Eletricidade Estática , Fatores de TempoRESUMO
BACKGROUND: Little is known about exposure to mouse allergen (Mus m 1) and allergic rhinitis (AR). OBJECTIVE: To evaluate the association between mouse allergen exposure and AR in children. METHODS: We examined the relation between mouse allergen level in house dust and AR in 511 children aged 6 to 14 years in San Juan, Puerto Rico. Study participants were chosen from randomly selected households using a multistage probability sample design. The study protocol included questionnaires, allergy skin testing, and collection of blood and dust samples. AR was defined as current rhinitis symptoms and skin test reactivity to at least one allergen. RESULTS: In the multivariate analyses, mouse allergen level was associated with a 25% decreased odds of AR in participating children (95% confidence interval, 0.62-0.92). Although endotoxin and mouse allergen levels were significantly correlated (r = 0.184, P < .001), the observed inverse association between Mus m 1 and AR was not explained by levels of endotoxin or other markers of microbial or fungal exposure (peptidoglycan and glucan). CONCLUSION: Mouse allergen exposure is associated with decreased odds of AR in Puerto Rican school-aged children.
Assuntos
Poluição do Ar em Ambientes Fechados , Alérgenos/imunologia , Asma/imunologia , Poeira/imunologia , Rinite Alérgica/imunologia , Adolescente , Animais , Asma/complicações , Asma/diagnóstico , Criança , Endotoxinas/imunologia , Feminino , Humanos , Masculino , Camundongos , Razão de Chances , Porto Rico , Rinite Alérgica/complicações , Rinite Alérgica/diagnóstico , Testes Cutâneos , Inquéritos e QuestionáriosRESUMO
Pro-inflammatory fungal ß-d-glucan (BDG) polysaccharides cause respiratory pathology. However, specific immunological effects of unique BDG structures on pulmonary inflammation are understudied. We characterized the effect of four unique fungal BDGs with unique branching patterns, solubility, and molecular weights in murine airways. Scleroglucan (1 â 3)(1 â 6)-highly branched BDG, laminarin (1 â 3)(1 â 6)-branched BDG, curdlan (1 â 3)-linear BDG, and pustulan (1 â 6)-linear BDG were assessed by nuclear magnetic resonance spectroscopy. Each BDG was tested by inhalation model with C3HeB/FeJ mice and compared to saline-exposed control mice and unexposed sentinels (n = 3-19). Studies were performed ±heat-inactivation (1 h autoclave) to increase BDG solubility. Outcomes included bronchoalveolar lavage (BAL) differential cell counts (macrophages, neutrophils, lymphocytes, eosinophils), cytokines, serum IgE, and IgG2a (multiplex and ELISA). Ex vivo primary cells removed from lungs and plated at monolayer were stimulated (BDG, lipopolysaccharide (LPS), anti-CD3), and cytokines compared to unstimulated cells. Right lung histology was performed. Inhalation of BDGs with distinct branching patterns exhibited varying inflammatory potency and immunogenicity. Lichen-derived (1 â 6)-linear pustulan was the most pro-inflammatory BDG, increasing inflammatory infiltrate (BAL), serum IgE and IgG2a, and cytokine production. Primed lung cells responded to secondary LPS stimulation with a T-cell-specific response to pustulan. Glucan source and solubility should be considered in exposure and toxicological studies.
Assuntos
Pulmão , beta-Glucanas , Animais , Masculino , Camundongos , beta-Glucanas/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/imunologia , Pulmão/metabolismo , Pneumonia/imunologia , Pneumonia/patologia , Pneumonia/metabolismo , Pneumonia/induzido quimicamente , Citocinas/metabolismo , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/química , Camundongos Endogâmicos C3H , Glucanos/farmacologiaRESUMO
Background: Eight-four percent of people own smartphones and view them 14 billion times daily, making them potential vectors for environmental hazards such as allergens, ß-D-glucans (BDGs), and endotoxin. Whether these toxins are prevalent and the effectiveness of cleaning solutions targeting these agents on smartphones have not been studied. Objective: We sought to determine (1) whether phones are reservoirs of allergen, endotoxin, and BDGs and (2) if present, whether their levels can be effectively reduced by using specific cleaning methods. Methods: Electrostatic wipes used to wipe the phones of 15 volunteers were tested to determine their allergen, BDG, and endotoxin levels. Cleaning interventions were done on simulated phone models; 70% isopropyl alcohol, 0.184% benzyl and ethyl benzyl ammonium chloride (Clorox nonbleach [The Chlorox Company, Oakland, Calif]), 0.12% chlorhexidine, 0.05% cetylpyridinium, 3% benzyl benzoate, and 3% tannic acid wipes were used and compared with wipes with no solution (the control). Results: The smartphones showed high and variable levels of BDG and endotoxin. Cat and dog allergens were found mostly on the smartphones of pet owners. The combination of chlorhexidine and cetylpyridinium significantly reduced BDG levels (mean 269 ng/wipe vs 1930 ng/wipe for the control [P < .05]) and endotoxin, (mean 349 vs 1320 endotoxin units/wipe for the control [P < .05]). The combination of benzyl benzoate and tannic acid significantly reduced the levels of cat and dog allergens (dog, mean level of 14 ng/wipe versus 407 ng/wipe for the control [P < .001]; cat, mean level of 55 ng/wipe versus 1550 ng/wipe for the control [P < .001]). The combination mixture solutions had the greatest reductions compared with the control. Conclusions: There are elevated levels of BDG, allergens, and endotoxin on smartphones. The combination of chlorhexidine and cetylpyridinium was the most effective in reducing BDG and endotoxin levels, and the combination of benzyl benzoate and tannic acid was most effective in reducing cat and dog allergen levels on smartphones.
RESUMO
BACKGROUND: Pediatric sleep-disordered breathing (SDB) disproportionately affects children with low socioeconomic status (SES). The multilevel risk factors that drive these associations are not well understood. RESEARCH QUESTION: What are the associations between SDB risk factors, including individual health conditions (obesity, asthma, and allergies), household SES (maternal education), indoor exposures (environmental tobacco smoke [ETS] and pests), and neighborhood characteristics (neighborhood disadvantage), and pediatric SDB symptoms? STUDY DESIGN AND METHODS: Cross-sectional analyses were performed on 303 children (aged 6-12 years) enrolled in the Environmental Assessment of Sleep Youth study from 2018 to 2022. Exposures were determined by caregiver reports, assays of measured settled dust from the child's bedroom, and neighborhood-level Census data (deriving the Childhood Opportunity Index to characterize neighborhood disadvantage). The primary outcome was the SDB-related symptom burden assessed by the OSA-18 questionnaire total score. Using linear regression models, we calculated associations between exposures and SDB-related symptom burden, adjusting for sociodemographic factors, then health conditions, indoor environment, and neighborhood factors. RESULTS: The sample included 303 children (39% Hispanic, Latino, Latina, or Spanish origin; 30% Black or African American; 22% White; and 11% other). Increasing OSA-18 total scores were associated with low household SES after adjustment for demographic factors, and with asthma, allergies, ETS, pests (mouse, cockroach, and rodents), and an indoor environmental index (sum of the presence of pests and ETS; 0-2) after adjusting for sociodemographic factors. Even after further adjusting for asthma, allergies, and neighborhood disadvantage, ETS and pest exposure were associated with OSA-18 (ETS: ß = 12.80; 95% CI, 7.07-18.53, also adjusted for pest; pest exposure: ß = 3.69; 95% CI, 0.44-6.94, also adjusted for ETS). INTERPRETATION: In addition to associations with ETS, a novel association was observed for indoor pest exposure and SDB symptom burden. Strategies to reduce household exposure to ETS and indoor allergens should be tested as approaches for reducing sleep health disparities.
RESUMO
Biomass fuels (wood) are commonly used indoors in underventilated environments for cooking in the developing world, but the impact on lung physiology is poorly understood. Quantitative computed tomography (qCT) can provide sensitive metrics to compare the lungs of women cooking with wood vs. liquified petroleum gas (LPG). We prospectively assessed (qCT and spirometry) 23 primary female cooks (18 biomass, 5 LPG) with no history of cardiopulmonary disease in Thanjavur, India. CT was obtained at coached total lung capacity (TLC) and residual volume (RV). qCT assessment included texture-derived ground glass opacity [GGO: Adaptive Multiple Feature Method (AMFM)], air-trapping (expiratory voxels ≤ -856HU) and image registration-based assessment [Disease Probability Measure (DPM)] of emphysema, functional small airways disease (%AirTrapDPM), and regional lung mechanics. In addition, within-kitchen exposure assessments included particulate matter <2.5 µm(PM2.5), black carbon, ß-(1, 3)-d-glucan (surrogate for fungi), and endotoxin. Air-trapping went undetected at RV via the threshold-based measure (voxels ≤ -856HU), possibly due to density shifts in the presence of inflammation. However, DPM, utilizing image-matching, demonstrated significant air-trapping in biomass vs. LPG cooks (P = 0.049). A subset of biomass cooks (6/18), identified using k-means clustering, had markedly altered DPM-metrics: greater air-trapping (P < 0.001), lower TLC-RV volume change (P < 0.001), a lower mean anisotropic deformation index (ADI; P < 0.001), and elevated % GGO (P < 0.02). Across all subjects, a texture measure of bronchovascular bundles was correlated to the log-transformed ß-(1, 3)-d-glucan concentration (P = 0.026, R = 0.46), and black carbon (P = 0.04, R = 0.44). This pilot study identified environmental links with qCT-based lung pathologies and a cluster of biomass cooks (33%) with significant small airways disease.NEW & NOTEWORTHY Quantitative computed tomography has identified a cluster of women (33%) cooking with biomass fuels (wood) with image-based markers of functional small airways disease and associated alterations in regional lung mechanics. Texture and image registration-based metrics of lung function may allow for early detection of potential inflammatory processes that may arise in response to inhaled biomass smoke, and help identify phenotypes of chronic lung disease prevalent in nonsmoking women in the developing world.
Assuntos
Poluição do Ar em Ambientes Fechados , Doença Pulmonar Obstrutiva Crônica , Feminino , Humanos , Projetos Piloto , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , Biomassa , Pulmão/diagnóstico por imagem , Material Particulado/análise , Culinária , CarbonoRESUMO
Recently, many approaches have been developed to improve the performance of nanomaterials. Combining more than one nanomaterial is one such approach that achieves superior results. However, during the fabrication of nanomaterials or formulation of end products, materials can be released into the ambient air and be inhaled by workers. The adverse health outcomes of inhaling such compounds are unknown. In this study, we examined such effects in combining two of the most utilized nanomaterials in several industrial sectors: zinc oxide (ZnO) and cerium oxide (CeO2). These materials can be found together in sunscreens, polyvinyl alcohol (PVA) films, and construction products. The aim of this study was to assess the adverse biological outcomes of CeO2-ZnO nano-mixtures in human lung epithelial cells. A549 human lung epithelial cells were treated with increasing concentrations of ZnO or CeO2 NPs alone, or as a mixture of both, under submerged conditions for 24 h. After treatment, cell viability, reactive oxygen species (ROS) formation, cell membrane integrity, and cytokine production were examined. ZnO NPs showed a dose-dependent trend for all endpoints. CeO2 NPs did not exhibit any toxic effect in any individual concentrations. When higher doses of ZnO were combined with increasing doses of CeO2, loss of cell viability and an elevation in cell membrane leakage were observed. Interleukin 8 (IL-8) and ROS generation were higher when ZnO NPs were combined with CeO2 NPs, compared to cells that were treated with ZnO alone. The release of monocyte chemoattractant protein-1 (MCP-1) was reduced in the cells that were treated with higher doses of ZnO and CeO2. Thus, the presence of CeO2 enhanced the toxicity of ZnO in A549 cells at non-toxic levels of CeO2. This suggests an additive toxicity of these two nanomaterials.
RESUMO
Pollen grains may contain allergens that exacerbate allergic respiratory diseases like asthma and rhinitis. In the presence of water, pollen grains (10-100 µm) can rupture to produce sub-pollen particles (SPP) with diameters <2.5 µm, which in comparison to intact pollen grains, have longer atmospheric lifetimes and greater penetration to the lower lung. The current study examines SPP, fungal spores, and bacteria in size-resolved atmospheric particulate matter (PM) using chemical and biological tracers. During springtime tree pollen season in Iowa City, Iowa, fine particle (PM2.5) concentrations of fructose (a pollen chemical tracer) increased on rainy sampling periods, especially during severe thunderstorms, and peaked when a tornado struck nearby. Submicron fluorescent particles, measured by single-particle fluorescence spectroscopy, were also enhanced during rain events, particularly thunderstorms in agreement with the chemical tracer measurements. PM2.5 sucrose (a pollen chemical tracer) concentrations were higher in early spring when nighttime temperatures were closer to freezing, while fructose concentrations were higher in late spring with warmer temperatures, consistent with chemical tracers being sensitive to seasonal temperature influences. The first co-located measurements of fructose and Bet v 1 (birch pollen allergen), indicated that SPP ranged in diameter from <0.25 to 2.5 µm during rainy sampling periods and that allergens and carbohydrates exhibited distinct size distributions. Meanwhile, mannitol (a fungal spore tracer) peaked on warm, dry days following rain and was primarily in supermicron particles (>1.0 µm), which is consistent with intact fungal spore diameters (1-30 µm). Bacterial endotoxins in PM also increased during extreme weather events, primarily in supermicron particles. While the concentrations of fructose, mannitol, and endotoxin all increased in PM2.5 µm during thunderstorms, the greatest relative increase in concentration was observed for fructose. Together, these observations suggest that SPP containing starch granules and allergens (Bet v 1) were released during rainy sampling periods. This study advances the use of chemical tracers to track SPP and other bioaerosols in the atmosphere, by providing new insight to their size distribution and response to extreme weather conditions.
RESUMO
As a potent inflammatory agent, endotoxin is a key analyte of interest for studies of lung ailments in domestic environments and occupational settings with organic dust. A relatively unexplored advance in endotoxin exposure assessment is the use of recombinant factor C (rFC) from the Limulus pathway in a fluorometric assay. In this study, we compared airborne endotoxin concentrations in laboratory- and field-collected parallel air samples using the kinetic Limulus amebocyte lysate (LAL) assay and the rFC assay. Air sampling was performed using paired Institute of Occupational Medicine (IOM) samplers, Button samplers, closed-face cassettes, and cyclone samplers. Field sampling was performed in 10 livestock production facilities, including those housing swine, chicken, turkey, dairy cows, cattle, and horses. Laboratory sampling was performed in exposure chambers using resuspended airborne dust collected in five livestock facilities. Paired samples were extracted in pyrogen-free water with 0.05% Tween 20 and analyzed using LAL and rFC assays. In 402 field sample pairs there was excellent agreement between endotoxin concentrations determined by LAL and rFC (r = 0.93; P < 0.0001). In 510 laboratory sample pairs there was also excellent agreement between the two assays (r = 0.86; P < 0.0001). Correlations for subgroups of facility or dust type ranged from 0.65 to 0.96. Mixed-model analysis of variance (ANOVA) for the field studies showed significant interactions of facility-sampler and facility-assay. rFC/LAL ratios of the geometric means were 0.9 to 1.14 for the samplers (not significantly different from 1.0). The data from this study demonstrate that the LAL assay and the rFC assay return similar estimates of exposure in livestock facilities. Both methods provided suitable lower limits of detection such that all but 19 of 1,824 samples were quantifiable.
Assuntos
Microbiologia do Ar , Ar/análise , Técnicas Bacteriológicas/métodos , Endotoxinas/análise , Precursores Enzimáticos/metabolismo , Teste do Limulus/métodos , Serina Endopeptidases/metabolismo , Animais , Animais Domésticos , Proteínas de Artrópodes , Abrigo para Animais , Sensibilidade e EspecificidadeRESUMO
Associations between house dust-associated beta-(1,3)-glucan exposure and airway inflammatory reactions have been reported, while such exposures in early childhood have been suggested to protect against asthma and wheezing. Most epidemiological studies have used reservoir dust samples and an inhibition enzyme immunoassay (EIA) for beta-(1,3)-glucan exposure assessment. The objective of this study was to develop inexpensive but highly sensitive enzyme immunoassays to measure airborne beta-(1,3)-glucans in low-exposure environments, like homes. Specificities of available anti-beta-(1,3)-glucan antibodies were defined by direct and inhibition experiments. Three suitable antibody combinations were selected for sandwich EIAs. beta-(1,3)-Glucans in passive airborne dust collected with an electrostatic dust fall collector (EDC) and floor dust from seven homes were measured with the three EIAs. Floor dust samples were additionally analyzed in the inhibition EIA. The sandwich EIAs were sensitive enough for airborne glucan measurement and showed different specificities for commercial glucans, while the beta-(1,3)-glucan levels in house dust samples correlated strongly. The feasibility of measuring glucans in airborne dust with the recently introduced EDC method was further investigated by selecting the most suitable of the three EIAs to measure and compare beta-(1,3)-glucan levels in the EDC and in floor and actively collected airborne dust samples of the previously performed EDC validation study. The EDC beta-(1,3)-glucan levels correlated moderately with beta-(1,3)-glucans in actively collected airborne dust and floor dust samples, while the glucan levels in the airborne dust and floor dust samples did not correlate. The combination of the newly developed beta-(1,3)-glucan sandwich EIA with EDC sampling now allows assessment in large-scale population studies of exposure to airborne beta-(1,3)-glucans in homes or other low-exposure environments.
Assuntos
Poluentes Atmosféricos/análise , Poluentes Atmosféricos/imunologia , Técnicas Imunoenzimáticas/métodos , beta-Glucanas/análise , beta-Glucanas/imunologia , Microbiologia do Ar , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , Antígenos de Bactérias/análise , Antígenos de Fungos/análise , Antígenos de Plantas/análise , Asma/etiologia , Poeira/análise , Poeira/imunologia , Exposição Ambiental , Monitoramento Ambiental/métodos , Habitação , Humanos , Técnicas Imunoenzimáticas/estatística & dados numéricos , Exposição por Inalação , Proteoglicanas , Eletricidade Estática , beta-Glucanas/efeitos adversosRESUMO
Adverse respiratory health effects in the agricultural industry have been linked to particulate endotoxin exposure. However, whether the endotoxin concentration is significantly correlated to the size of the particle remains an open question. To date, limited research has been conducted to assess particulate endotoxin exposures in the agricultural industry in general or the equine industry in particular. A task-based exposure assessment was conducted to characterize the endotoxin levels of inhalable and respirable particles on four Kentucky farms during the summer season. We conducted personal sampling of respirable and inhalable particles (n = 75) across all four farms and particulate endotoxin (n = 58) on two of them. Simultaneously, we collected real-time area samples across all four farms by task - horse care, filing hooves, cleaning stalls, cleaning barns, cleaning dry lots, and cleaning trucks. The endotoxin concentration of inhalable particles (geometric mean: 50.2-1,024 EU/m3) was ~50 times higher than that of respirable particles (geometric mean: 1.72-19.0 EU/m3). Horse care generated the lowest endotoxin concentrations for both particle sizes, while cleaning tasks tended to produce higher concentrations. There was no significant correlation between the endotoxin and particle concentrations for each size fraction based on tasks by farm (R2 = 0.069 for inhalable; 0.214 for respirable). The equine workers in this study were exposed to higher endotoxin concentrations than workers in other industries, such as the swine industry. Providing exposure control guidelines and recommendations to the equine industry is necessary to reduce long-term endotoxin exposure and to prevent adverse respiratory symptoms.