Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 109(7): 1255-1271, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35679866

RESUMO

Osteoarthritis is a complex degenerative joint disease. Here, we investigate matched genotype and methylation profiles of primary chondrocytes from macroscopically intact (low-grade) and degraded (high-grade) osteoarthritis cartilage and from synoviocytes collected from 98 osteoarthritis-affected individuals undergoing knee replacement surgery. We perform an epigenome-wide association study of knee cartilage degeneration and report robustly replicating methylation markers, which reveal an etiologic mechanism linked to the migration of epithelial cells. Using machine learning, we derive methylation models of cartilage degeneration, which we validate with 82% accuracy in independent data. We report a genome-wide methylation quantitative trait locus (mQTL) map of articular cartilage and synovium and identify 18 disease-grade-specific mQTLs in osteoarthritis cartilage. We resolve osteoarthritis GWAS loci through causal inference and colocalization analyses and decipher the epigenetic mechanisms that mediate the effect of genotype on disease risk. Together, our findings provide enhanced insights into epigenetic mechanisms underlying osteoarthritis in primary tissues.


Assuntos
Cartilagem Articular , Osteoartrite , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Metilação de DNA/genética , Epigenoma , Humanos , Osteoartrite/genética , Osteoartrite/metabolismo
2.
Hum Mol Genet ; 31(12): 2090-2105, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35088088

RESUMO

Osteoarthritis is a prevalent joint disease and a major cause of disability worldwide with no curative therapy. Development of disease-modifying therapies requires a better understanding of the molecular mechanisms underpinning disease. A hallmark of osteoarthritis is cartilage degradation. To define molecular events characterizing osteoarthritis at the whole transcriptome level, we performed deep RNA sequencing in paired samples of low- and high-osteoarthritis grade knee cartilage derived from 124 patients undergoing total joint replacement. We detected differential expression between low- and high-osteoarthritis grade articular cartilage for 365 genes and identified a 38-gene signature in osteoarthritis cartilage by replicating our findings in an independent dataset. We also found differential expression for 25 novel long non-coding RNA genes (lncRNAs) and identified potential lncRNA interactions with RNA-binding proteins in osteoarthritis. We assessed alterations in the relative usage of individual gene transcripts and identified differential transcript usage for 82 genes, including ABI3BP, coding for an extracellular matrix protein, AKT1S1, a negative regulator of the mTOR pathway and TPRM4, coding for a transient receptor potential channel. We further assessed genome-wide differential splicing, for the first time in osteoarthritis, and detected differential splicing for 209 genes, which were enriched for extracellular matrix, proteoglycans and integrin surface interactions terms. In the largest study of its kind in osteoarthritis, we find that isoform and splicing changes, in addition to extensive differences in both coding and non-coding sequence expression, are associated with disease and demonstrate a novel layer of genomic complexity to osteoarthritis pathogenesis.


Assuntos
Osteoartrite , RNA Longo não Codificante , Processamento Alternativo/genética , Perfilação da Expressão Gênica , Humanos , Osteoartrite/genética , Isoformas de Proteínas/genética , RNA Longo não Codificante/genética
3.
Ann Rheum Dis ; 82(7): 963-973, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36927643

RESUMO

OBJECTIVES: In osteoarthritis, methylation of lysine 79 on histone H3 (H3K79me), a protective epigenetic mechanism, is reduced. Histone methylation levels are dynamically regulated by histone methyltransferases and demethylases. Here, we aimed to identify which histone demethylases regulate H3K79me in cartilage and investigate whether their targeting protects against osteoarthritis. METHODS: We determined histone demethylase expression in human non-osteoarthritis and osteoarthritis cartilage using qPCR. The role of histone demethylase families and subfamilies on H3K79me was interrogated by treatment of human C28/I2 chondrocytes with pharmacological inhibitors, followed by western blot and immunofluorescence. We performed C28/I2 micromasses to evaluate effects on glycosaminoglycans by Alcian blue staining. Changes in H3K79me after destabilisation of the medial meniscus (DMM) in mice were determined by immunohistochemistry. Daminozide, a KDM2/7 subfamily inhibitor, was intra-articularly injected in mice upon DMM. Histone demethylases targeted by daminozide were individually silenced in chondrocytes to dissect their role on H3K79me and osteoarthritis. RESULTS: We documented the expression signature of histone demethylases in human non-osteoarthritis and osteoarthritis articular cartilage. Inhibition of Jumonji-C demethylase family increased H3K79me in human chondrocytes. Blockade of KDM2/7 histone demethylases with daminozide increased H3K79me and glycosaminoglycans. In mouse articular cartilage, H3K79me decayed rapidly upon induction of joint injury. Early and sustained intra-articular treatment with daminozide enhanced H3K79me and exerted protective effects in mice upon DMM. Individual silencing of KDM7A/B demethylases in human chondrocytes demonstrated that KDM7A/B mediate protective effects of daminozide on H3K79me and osteoarthritis. CONCLUSION: Targeting KDM7A/B histone demethylases could be an attractive strategy to protect joints against osteoarthritis.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Camundongos , Animais , Histona Desmetilases/metabolismo , Histona Desmetilases/farmacologia , Metilação , Histona Desmetilases com o Domínio Jumonji , Osteoartrite/metabolismo , Condrócitos/metabolismo , Cartilagem Articular/metabolismo , Glicosaminoglicanos
4.
Rheumatology (Oxford) ; 62(4): 1669-1676, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36040165

RESUMO

OBJECTIVES: To present an unbiased approach to identify positional transcript single nucleotide polymorphisms (SNPs) of osteoarthritis (OA) risk loci by allelic expression imbalance (AEI) analyses using RNA sequencing of articular cartilage and subchondral bone from OA patients. METHODS: RNA sequencing from 65 articular cartilage and 24 subchondral bone from OA patients was used for AEI analysis. AEI was determined for all genes present in the 100 regions reported by the genome-wide association studies (GWAS) catalog that were also expressed in cartilage or bone. The count fraction of the alternative allele (φ) was calculated for each heterozygous individual with the risk SNP or with the SNP in linkage disequilibrium (LD) with it (r2 > 0.6). Furthermore, a meta-analysis was performed to generate a meta-φ (null hypothesis median φ = 0.49) and P-value for each SNP. RESULTS: We identified 30 transcript SNPs (28 in cartilage and two in subchondral bone) subject to AEI in 29 genes. Notably, 10 transcript SNPs were located in genes not previously reported in the GWAS catalog, including two long intergenic non-coding RNAs (lincRNAs), MALAT1 (meta-φ = 0.54, FDR = 1.7×10-4) and ILF3-DT (meta-φ = 0.6, FDR = 1.75×10-5). Moreover, 12 drugs were interacting with seven genes displaying AEI, of which seven drugs have been already approved. CONCLUSIONS: By prioritizing proxy transcript SNPs that mark AEI in cartilage and/or subchondral bone at loci harbouring GWAS signals, we present an unbiased approach to identify the most likely functional OA risk-SNP and gene. We identified 10 new potential OA risk genes ready for further translation towards underlying biological mechanisms.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Cartilagem Articular/metabolismo , Estudo de Associação Genômica Ampla , Osteoartrite/genética , Osteoartrite/metabolismo , Alelos
5.
Rheumatology (Oxford) ; 62(2): 894-904, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35532170

RESUMO

OBJECTIVE: To identify FN1 transcripts associated with OA pathophysiology and investigate the downstream effects of modulating FN1 expression and relative transcript ratio. METHODS: FN1 transcriptomic data was obtained from our previously assessed RNA-seq dataset of lesioned and preserved OA cartilage samples from the Research osteoArthritis Articular Cartilage (RAAK) study. Differential transcript expression analysis was performed on all 27 FN1 transcripts annotated in the Ensembl database. Human primary chondrocytes were transduced with lentiviral particles containing short hairpin RNA (shRNA) targeting full-length FN1 transcripts or non-targeting shRNA. Subsequently, matrix deposition was induced in our 3D in vitro neo-cartilage model. Effects of changes in the FN1 transcript ratio on sulphated glycosaminoglycan (sGAG) deposition were investigated by Alcian blue staining and dimethylmethylene blue assay. Moreover, gene expression levels of 17 cartilage-relevant markers were determined by reverse transcription quantitative polymerase chain reaction. RESULTS: We identified 16 FN1 transcripts differentially expressed between lesioned and preserved cartilage. FN1-208, encoding migration-stimulating factor, was the most significantly differentially expressed protein coding transcript. Downregulation of full-length FN1 and a concomitant increased FN1-208 ratio resulted in decreased sGAG deposition as well as decreased ACAN and COL2A1 and increased ADAMTS-5, ITGB1 and ITGB5 gene expression levels. CONCLUSION: We show that full-length FN1 downregulation and concomitant relative FN1-208 upregulation was unbeneficial for deposition of cartilage matrix, likely due to decreased availability of the classical RGD (Arg-Gly-Asp) integrin-binding site of fibronectin.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Fibronectinas/genética , Fibronectinas/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Condrócitos/metabolismo , Cartilagem Articular/metabolismo , RNA Interferente Pequeno
6.
Rheumatology (Oxford) ; 61(2): 856-864, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33989379

RESUMO

OBJECTIVES: OA is a complex genetic disease with different risk factors contributing to its development. One of the genes, TNFRSF11B, previously identified with gain-of-function mutation in a family with early-onset OA with chondrocalcinosis, is among the highest upregulated genes in lesioned OA cartilage (RAAK-study). Here, we determined the role of TNFRSF11B overexpression in development of OA. METHODS: Human primary articular chondrocytes (9 donors RAAK study) were transduced using lentiviral particles with or without TNFRSF11B. Cells were cultured for 1 week in a 3 D in-vitro chondrogenic model. TNFRSF11B overexpression was confirmed by RT-qPCR, immunohistochemistry and ELISA. Effects of TNFRSF11B overexpression on cartilage matrix deposition, matrix mineralization, and genes highly correlated to TNFRSF11B in RNA-sequencing dataset (r >0.75) were determined by RT-qPCR. Additionally, glycosaminoglycans and collagen deposition were visualized with Alcian blue staining and immunohistochemistry (COL1 and COL2). RESULTS: Overexpression of TNFRSF11B resulted in strong upregulation of MMP13, COL2A1 and COL1A1. Likewise, mineralization and osteoblast characteristic markers RUNX2, ASPN and OGN showed a consistent increase. Among 30 genes highly correlated to TNFRSF11B, expression of only eight changed significantly, with BMP6 showing the highest increase (9-fold) while expression of RANK and RANKL remained unchanged indicating previously unknown downstream pathways of TNFRSF11B in cartilage. CONCLUSION: Results of our 3D in vitro chondrogenesis model indicate that upregulation of TNFRSF11B in lesioned OA cartilage may act as a direct driving factor for chondrocyte to osteoblast transition observed in OA pathophysiology. This transition does not appear to act via the OPG/RANK/RANKL triad common in bone remodeling.


Assuntos
Doenças das Cartilagens/etiologia , Osteoartrite/etiologia , Osteoprotegerina/metabolismo , Idoso , Cartilagem/metabolismo , Doenças das Cartilagens/metabolismo , Células Cultivadas , Condrócitos/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Osteoartrite/metabolismo , Reação em Cadeia da Polimerase
7.
Rheumatology (Oxford) ; 62(1): 457-466, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-35383365

RESUMO

OBJECTIVES: To investigate whether the deiodinase inhibitor iopanoic acid (IOP) has chondroprotective properties, a mechanical stress induced model of human aged explants was used to test both repeated dosing and slow release of IOP. METHODS: Human osteochondral explants subjected to injurious mechanical stress (65%MS) were treated with IOP or IOP encapsulated in poly lactic-co-glycolic acid-polyethylene glycol nanoparticles (NP-IOP). Changes to cartilage integrity and signalling were determined by Mankin scoring of histology, sulphated glycosaminoglycan (sGAG) release and expression levels of catabolic, anabolic and hypertrophic markers. Subsequently, on a subgroup of samples, RNA sequencing was performed on 65%MS (n = 14) and 65%MS+IOP (n = 7) treated cartilage to identify IOP's mode of action. RESULTS: Damage from injurious mechanical stress was confirmed by increased cartilage surface damage in the Mankin score, increased sGAG release, and consistent upregulation of catabolic markers and downregulation of anabolic markers. IOP and, though less effective, NP-IOP treatment, reduced MMP13 and increased COL2A1 expression. In line with this, IOP and NP-IOP reduced cartilage surface damage induced by 65%MS, while only IOP reduced sGAG release from explants subjected to 65%MS. Lastly, differential expression analysis identified 12 genes in IOP's mode of action to be mainly involved in reducing metabolic processes (INSIG1, DHCR7, FADS1 and ACAT2) and proliferation and differentiation (CTGF, BMP5 and FOXM1). CONCLUSION: Treatment with the deiodinase inhibitor IOP reduced detrimental changes of injurious mechanical stress. In addition, we identified that its mode of action was likely on metabolic processes, cell proliferation and differentiation.


Assuntos
Cartilagem Articular , Glândula Tireoide , Humanos , Glândula Tireoide/metabolismo , Iodeto Peroxidase/metabolismo , Iodeto Peroxidase/farmacologia , Transdução de Sinais , Cartilagem Articular/metabolismo , Condrócitos/metabolismo
8.
Rheumatology (Oxford) ; 62(1): 360-372, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-35412619

RESUMO

OBJECTIVES: To study the mechanism by which the readthrough mutation in TNFRSF11B, encoding osteoprotegerin (OPG) with additional 19 amino acids at its C-terminus (OPG-XL), causes the characteristic bidirectional phenotype of subchondral bone turnover accompanied by cartilage mineralization in chondrocalcinosis patients. METHODS: OPG-XL was studied by human induced pluripotent stem cells expressing OPG-XL and two isogenic CRISPR/Cas9-corrected controls in cartilage and bone organoids. Osteoclastogenesis was studied with monocytes from OPG-XL carriers and matched healthy controls followed by gene expression characterization. Dual energy X-ray absorptiometry scans and MRI analyses were used to characterize the phenotype of carriers and non-carriers of the mutation. RESULTS: Human OPG-XL carriers relative to sex- and age-matched controls showed, after an initial delay, large active osteoclasts with high number of nuclei. By employing hiPSCs expressing OPG-XL and isogenic CRISPR/Cas9-corrected controls to established cartilage and bone organoids, we demonstrated that expression of OPG-XL resulted in excessive fibrosis in cartilage and high mineralization in bone accompanied by marked downregulation of MGP, encoding matrix Gla protein, and upregulation of DIO2, encoding type 2 deiodinase, gene expression, respectively. CONCLUSIONS: The readthrough mutation at CCAL1 locus in TNFRSF11B identifies an unknown role for OPG-XL in subchondral bone turnover and cartilage mineralization in humans via DIO2 and MGP functions. Previously, OPG-XL was shown to affect binding between RANKL and heparan sulphate (HS) resulting in loss of immobilized OPG-XL. Therefore, effects may be triggered by deficiency in the immobilization of OPG-XL Since the characteristic bidirectional pathophysiology of articular cartilage calcification accompanied by low subchondral bone mineralization is also a hallmark of OA pathophysiology, our results are likely extrapolated to common arthropathies.


Assuntos
Calcinose , Cartilagem Articular , Condrocalcinose , Células-Tronco Pluripotentes Induzidas , Humanos , Remodelação Óssea , Calcinose/metabolismo , Cartilagem Articular/metabolismo , Condrocalcinose/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo
9.
Rheumatology (Oxford) ; 61(7): 3023-3032, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34730803

RESUMO

OBJECTIVE: To gain insight in the expression profile of long non-coding RNAs (lncRNAs) in OA subchondral bone. METHODS: RNA sequencing data of macroscopically preserved and lesioned OA subchondral bone of patients that underwent joint replacement surgery due to OA (N = 22 pairs; 5 hips, 17 knees, Research osteoArthrits Articular Tissue (RAAK study) was run through an in-house pipeline to detect expression of lncRNAs. Differential expression analysis between preserved and lesioned bone was performed. Spearman correlations were calculated between differentially expressed lncRNAs and differentially expressed mRNAs identified previously in the same samples. Primary osteogenic cells were transfected with locked nucleic acid (LNA) GapmeRs targeting AC005165.1 lncRNA, to functionally investigate its potential mRNA targets. RESULTS: In total, 2816 lncRNAs were well-expressed in subchondral bone and we identified 233 lncRNAs exclusively expressed in knee and 307 lncRNAs exclusively in hip. Differential expression analysis, using all samples (N = 22 pairs; 5 hips, 17 knees), resulted in 21 differentially expressed lncRNAs [false discovery rate (FDR) < 0.05, fold change (FC) range 1.19-7.39], including long intergenic non-protein coding RNA (LINC) 1411 (LINC01411, FC = 7.39, FDR = 2.20 × 10-8), AC005165.1 (FC = 0.44, FDR = 2.37 × 10-6) and empty spiracles homeobox 2 opposite strand RNA (EMX2OS, FC = 0.41, FDR = 7.64 × 10-3). Among the differentially expressed lncRNAs, five were also differentially expressed in articular cartilage, including AC005165.1, showing similar direction of effect. Downregulation of AC005165.1 in primary osteogenic cells resulted in consistent downregulation of highly correlated frizzled related protein (FRZB). CONCLUSION: The current study identified a novel lncRNA, AC005165.1, being dysregulated in OA articular cartilage and subchondral bone. Downregulation of AC005165.1 caused a decreased expression of OA risk gene FRZB, an important member of the wnt pathway, suggesting that AC005165.1 could be an attractive potential therapeutic target with effects in articular cartilage and subchondral bone.


Assuntos
Cartilagem Articular , Peptídeos e Proteínas de Sinalização Intracelular , Osteoartrite do Joelho , Osteoartrite , RNA Longo não Codificante , Osso e Ossos/metabolismo , Cartilagem Articular/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Articulação do Joelho/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite do Joelho/diagnóstico , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/cirurgia , RNA Longo não Codificante/genética , RNA Mensageiro/genética
10.
J Pathol ; 255(3): 330-342, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34357595

RESUMO

Chondrocytes in mice developing osteoarthritis (OA) exhibit an aberrant response to the secreted cytokine transforming growth factor (TGF)-ß, consisting in a potentiation of intracellular signaling downstream of the transmembrane type I receptor kinase activin receptor-like kinase (ALK)1 against canonical TGF-ß receptor ALK5-mediated signaling. Unfortunately, the underlying mechanisms remain elusive. In order to identify novel druggable targets for OA, we aimed to investigate novel molecules regulating the ALK1/ALK5 balance in OA chondrocytes. We performed gene expression analysis of TGF-ß signaling modulators in joints from three different mouse models of OA and found an upregulated expression of the TGF-ß co-receptor Cripto (Tdgf1), which was validated in murine and human cartilage OA samples at the protein level. In vitro and ex vivo, elevated expression of Cripto favors the hypertrophic differentiation of chondrocytes, eventually contributing to tissue calcification. Furthermore, we found that Cripto participates in a TGF-ß-ALK1-Cripto receptor complex in the plasma membrane, thereby inducing catabolic SMAD1/5 signaling in chondrocytes. In conclusion, we demonstrate that Cripto is expressed in OA and plays a functional role promoting chondrocyte hypertrophy, thereby becoming a novel potential therapeutic target in OA, for which there is no efficient cure or validated biomarker. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Condrócitos/patologia , Proteínas Ligadas por GPI/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Neoplasias/metabolismo , Osteoartrite/patologia , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Fator de Crescimento Epidérmico/metabolismo , Humanos , Hipertrofia/patologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Transdução de Sinais/fisiologia
11.
BMC Med ; 19(1): 266, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34727949

RESUMO

BACKGROUND: Observational studies suggest interconnections between thyroid status, metabolism, and risk of coronary artery disease (CAD), but causality remains to be proven. The present study aimed to investigate the potential causal relationship between thyroid status and cardiovascular disease and to characterize the metabolomic profile associated with thyroid status. METHODS: Multi-cohort two-sample Mendelian randomization (MR) was performed utilizing genome-wide significant variants as instruments for standardized thyrotropin (TSH) and free thyroxine (fT4) within the reference range. Associations between TSH and fT4 and metabolic profile were investigated in a two-stage manner: associations between TSH and fT4 and the full panel of 161 metabolomic markers were first assessed hypothesis-free, then directional consistency was assessed through Mendelian randomization, another metabolic profile platform, and in individuals with biochemically defined thyroid dysfunction. RESULTS: Circulating TSH was associated with 52/161 metabolomic markers, and fT4 levels were associated with 21/161 metabolomic markers among 9432 euthyroid individuals (median age varied from 23.0 to 75.4 years, 54.5% women). Positive associations between circulating TSH levels and concentrations of very low-density lipoprotein subclasses and components, triglycerides, and triglyceride content of lipoproteins were directionally consistent across the multivariable regression, MR, metabolomic platforms, and for individuals with hypo- and hyperthyroidism. Associations with fT4 levels inversely reflected those observed with TSH. Among 91,810 CAD cases and 656,091 controls of European ancestry, per 1-SD increase of genetically determined TSH concentration risk of CAD increased slightly, but not significantly, with an OR of 1.03 (95% CI 0.99-1.07; p value 0.16), whereas higher genetically determined fT4 levels were not associated with CAD risk (OR 1.00 per SD increase of fT4; 95% CI 0.96-1.04; p value 0.59). CONCLUSIONS: Lower thyroid status leads to an unfavorable lipid profile and a somewhat increased cardiovascular disease risk.


Assuntos
Doenças Cardiovasculares , Tireotropina , Adulto , Idoso , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Feminino , Humanos , Lipídeos , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Tiroxina , Adulto Jovem
12.
Ann Rheum Dis ; 80(5): 598-604, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34412027

RESUMO

OBJECTIVES: Vitamin K is hypothesised to play a role in osteoarthritis (OA) pathogenesis through effects on vitamin K-dependent bone and cartilage proteins, and therefore may represent a modifiable risk factor. A genetic variant in a vitamin K-dependent protein that is an essential inhibitor for cartilage calcification, matrix Gla protein (MGP), was associated with an increased risk for OA. Vitamin K antagonist anticoagulants (VKAs), such as warfarin and acenocoumarol, act as anticoagulants through inhibition of vitamin K-dependent blood coagulation proteins. VKAs likely also affect the functioning of other vitamin K-dependent proteins such as MGP. METHODS: We investigated the effect of acenocoumarol usage on progression and incidence of radiographic OA in 3494 participants of the Rotterdam Study cohort. We also examined the effect of MGP and VKORC1 single nucleotide variants on this association. RESULTS: Acenocoumarol usage was associated with an increased risk of OA incidence and progression (OR=2.50, 95% CI=1.94-3.20), both for knee (OR=2.34, 95% CI=1.67-3.22) and hip OA (OR=2.74, 95% CI=1.82-4.11). Among acenocoumarol users, carriers of the high VKORC1(BB) expression haplotype together with the MGP OA risk allele (rs1800801-T) had an increased risk of OA incidence and progression (OR=4.18, 95% CI=2.69-6.50), while this relationship was not present in non-users of that group (OR=1.01, 95% CI=0.78-1.33). CONCLUSIONS: These findings support the importance of vitamin K and vitamin K-dependent proteins, as MGP, in the pathogenesis of OA. Additionally, these results may have direct implications for the clinical prevention of OA, supporting the consideration of direct oral anticoagulants in favour of VKAs.


Assuntos
4-Hidroxicumarinas/efeitos adversos , Acenocumarol/efeitos adversos , Anticoagulantes/efeitos adversos , Indenos/efeitos adversos , Osteoartrite/epidemiologia , Vitamina K/antagonistas & inibidores , Idoso , Alelos , Proteínas de Ligação ao Cálcio/efeitos dos fármacos , Progressão da Doença , Proteínas da Matriz Extracelular/efeitos dos fármacos , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Osteoartrite/induzido quimicamente , Osteoartrite/patologia , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Vitamina K/efeitos adversos , Vitamina K Epóxido Redutases/efeitos dos fármacos , Proteína de Matriz Gla
13.
Ann Rheum Dis ; 80(3): 367-375, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33055079

RESUMO

BACKGROUND: Despite recent advances in the understanding of the genetic architecture of osteoarthritis (OA), only two genetic loci have been identified for OA of the hand, in part explained by the complexity of the different hand joints and heterogeneity of OA pathology. METHODS: We used data from the Rotterdam Study (RSI, RSII and RSIII) to create three hand OA phenotypes based on clustering patterns of radiographic OA severity to increase power in our modest discovery genome-wide association studies in the RS (n=8700), and sought replication in an independent cohort, the Framingham Heart Study (n=1203). We used multiple approaches that leverage different levels of information and functional data to further investigate the underlying biological mechanisms and candidate genes for replicated loci. We also attempted to replicate known OA loci at other joint sites, including the hips and knees. RESULTS: We found two novel genome-wide significant loci for OA in the thumb joints. We identified WNT9A as a possible novel causal gene involved in OA pathogenesis. Furthermore, several previously identified genetic loci for OA seem to confer risk for OA across multiple joints: TGFa, RUNX2, COL27A1, ASTN2, IL11 and GDF5 loci. CONCLUSIONS: We identified a robust novel genetic locus for hand OA on chromosome 1, of which WNT9A is the most likely causal gene. In addition, multiple genetic loci were identified to be associated with OA across multiple joints. Our study confirms the potential for novel insight into the genetic architecture of OA by using biologically meaningful stratified phenotypes.


Assuntos
Articulação da Mão , Osteoartrite , Proteínas Wnt , Análise por Conglomerados , Colágenos Fibrilares/genética , Estudo de Associação Genômica Ampla , Articulação da Mão/diagnóstico por imagem , Humanos , Osteoartrite/complicações , Osteoartrite/diagnóstico por imagem , Osteoartrite/genética , Fenótipo , Proteínas Wnt/genética
14.
Cell Tissue Res ; 386(2): 309-320, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34241697

RESUMO

Cartilage has little intrinsic capacity for repair, so transplantation of exogenous cartilage cells is considered a realistic option for cartilage regeneration. We explored whether human-induced pluripotent stem cells (hiPSCs) could represent such unlimited cell sources for neo-cartilage comparable to human primary articular chondrocytes (hPACs) or human bone marrow-derived mesenchymal stromal cells (hBMSCs). For this, chondroprogenitor cells (hiCPCs) and hiPSC-derived mesenchymal stromal cells (hiMSCs) were generated from two independent hiPSC lines and characterized by morphology, flow cytometry, and differentiation potential. Chondrogenesis was compared to hBMSCs and hPACs by histology, immunohistochemistry, and RT-qPCR, while similarities were estimated based on Pearson correlations using a panel of 20 relevant genes. Our data show successful differentiations of hiPSC into hiMSCs and hiCPCs. Characteristic hBMSC markers were shared between hBMSCs and hiMSCs, with the exception of CD146 and CD45. However, neo-cartilage generated from hiMSCs showed low resemblances when compared to hBMSCs (53%) and hPACs (39%) characterized by lower collagen type 2 and higher collagen type 1 expression. Contrarily, hiCPC neo-cartilage generated neo-cartilage more similar to hPACs (65%), with stronger expression of matrix deposition markers. Our study shows that taking a stepwise approach to generate neo-cartilage from hiPSCs via chondroprogenitor cells results in strong similarities to neo-cartilage of hPACs within 3 weeks following chondrogenesis, making them a potential candidate for regenerative therapies. Contrarily, neo-cartilage deposited by hiMSCs seems more prone to hypertrophic characteristics compared to hPACs. We therefore compared chondrocytes derived from hiMSCs and hiCPCs with hPACs and hBMSCs to outline similarities and differences between their neo-cartilage and establish their potential suitability for regenerative medicine and disease modelling.


Assuntos
Cartilagem/citologia , Condrócitos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Mesenquimais/citologia , Cartilagem/metabolismo , Diferenciação Celular , Linhagem Celular , Condrócitos/metabolismo , Condrogênese , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Transcriptoma
15.
Rheumatology (Oxford) ; 60(3): 1166-1175, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32885253

RESUMO

OBJECTIVE: To identify OA subtypes based on cartilage transcriptomic data in cartilage tissue and characterize their underlying pathophysiological processes and/or clinically relevant characteristics. METHODS: This study includes n = 66 primary OA patients (41 knees and 25 hips), who underwent a joint replacement surgery, from which macroscopically unaffected (preserved, n = 56) and lesioned (n = 45) OA articular cartilage were collected [Research Arthritis and Articular Cartilage (RAAK) study]. Unsupervised hierarchical clustering analysis on preserved cartilage transcriptome followed by clinical data integration was performed. Protein-protein interaction (PPI) followed by pathway enrichment analysis were done for genes significant differentially expressed between subgroups with interactions in the PPI network. RESULTS: Analysis of preserved samples (n = 56) resulted in two OA subtypes with n = 41 (cluster A) and n = 15 (cluster B) patients. The transcriptomic profile of cluster B cartilage, relative to cluster A (DE-AB genes) showed among others a pronounced upregulation of multiple genes involved in chemokine pathways. Nevertheless, upon investigating the OA pathophysiology in cluster B patients as reflected by differentially expressed genes between preserved and lesioned OA cartilage (DE-OA-B genes), the chemokine genes were significantly downregulated with OA pathophysiology. Upon integrating radiographic OA data, we showed that the OA phenotype among cluster B patients, relative to cluster A, may be characterized by higher joint space narrowing (JSN) scores and low osteophyte (OP) scores. CONCLUSION: Based on whole-transcriptome profiling, we identified two robust OA subtypes characterized by unique OA, pathophysiological processes in cartilage as well as a clinical phenotype. We advocate that further characterization, confirmation and clinical data integration is a prerequisite to allow for development of treatments towards personalized care with concurrently more effective treatment response.


Assuntos
Perfilação da Expressão Gênica , Osteoartrite do Quadril/genética , Osteoartrite do Joelho/genética , RNA Mensageiro/metabolismo , Idoso , Cartilagem Articular/metabolismo , Análise por Conglomerados , Regulação para Baixo , Feminino , Humanos , Masculino , Análise em Microsséries , Osteoartrite do Quadril/metabolismo , Osteoartrite do Joelho/metabolismo , Fenótipo , Regulação para Cima
16.
FASEB J ; 34(9): 11546-11561, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32767602

RESUMO

Osteoarthritis (OA) is a degenerative joint disease, and inflammation within an arthritic joint plays a critical role in disease progression. Pro-inflammatory cytokines, specifically IL-1 and TNF-α, induce aberrant expression of catabolic and degradative enzymes and inflammatory cytokines in OA and result in a challenging environment for cartilage repair and regeneration. MicroRNAs (miRNAS) are small noncoding RNAs and are important regulatory molecules that act by binding to target messenger RNAs (mRNAs) to reduce protein synthesis and have been implicated in many diseases, including OA. The goal of this study was to understand the mechanisms of miRNA regulation of the transcriptome of tissue-engineered cartilage in response to IL-1ß and TNF-α using an in vitro murine induced pluripotent stem cell (miPSC) model system. We performed miRNA and mRNA sequencing to determine the temporal and dynamic responses of genes to specific inflammatory cytokines as well as miRNAs that are differentially expressed (DE) in response to both cytokines or exclusively to IL-1ß or TNF-α. Through integration of mRNA and miRNA sequencing data, we created networks of miRNA-mRNA interactions which may be controlling the response to inflammatory cytokines. Within the networks, hub miRNAs, miR-29b-3p, miR-17-5p, and miR-20a-5p, were identified. As validation of these findings, we found that delivery of miR-17-5p and miR-20a-5p mimics significantly decreased degradative enzyme activity levels while also decreasing expression of inflammation-related genes in cytokine-treated cells. This study utilized an integrative approach to determine the miRNA interactome controlling the response to inflammatory cytokines and novel mediators of inflammation-driven degradation in tissue-engineered cartilage.


Assuntos
Condrócitos/efeitos dos fármacos , Citocinas/farmacologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Mediadores da Inflamação/farmacologia , MicroRNAs/genética , RNA Mensageiro/genética , Animais , Cartilagem Articular/citologia , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Redes Reguladoras de Genes/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Interleucina-1beta/farmacologia , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Engenharia Tecidual/métodos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Fator de Necrose Tumoral alfa/farmacologia
17.
Clin Exp Rheumatol ; 39(3): 570-577, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32896247

RESUMO

OBJECTIVES: Antibodies targeting post-translationally modified proteins, such as anti-carbamylated protein antibodies (anti-CarP antibodies) are present in the sera of rheumatoid arthritis (RA) patients. These autoantibodies associate with increased risk of RA development and with severity of joint destruction. It is not known which proteins in the RA joint are recognised by anti-CarP antibodies. Therefore, we investigated the presence and identity of carbamylated proteins in the human (inflamed) joint. METHODS: We obtained synovium, cartilage and synovial fluid from RA joints. Cartilage and synovium were obtained from controls. Samples were processed and used for immunohistochemistry or mass-spectrometric analysis to investigate the presence of carbamylated proteins. Anti-CarP antibody reactivity towards identified carbamylated proteins was tested by ELISA. RESULTS: Immunohistochemistry showed extensive staining of RA and control synovial tissue. Whole proteome analyses of the joint tissues revealed a large number of carbamylated peptidyllysine residues. We identified many carbamylated proteins in cartilage and were also able to detect carbamylation in synovial tissue and synovial fluid. Carbamylation was not exclusive to the RA joint and was also present in the joints of controls. Anti-CarP antibodies in the sera of RA patients were able to recognise the identified carbamylated proteins. CONCLUSIONS: We conclude that numerous carbamylated proteins are present in the RA joint. These carbamylated proteins can be recognised by anti-CarP antibodies, substantiating the notion that anti-CarP antibodies may play a role in the pathogenesis of RA.


Assuntos
Artrite Reumatoide , Autoanticorpos , Ensaio de Imunoadsorção Enzimática , Humanos , Espectrometria de Massas , Membrana Sinovial
18.
Ann Rheum Dis ; 78(2): 270-277, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30504444

RESUMO

OBJECTIVE: To uncover the microRNA (miRNA) interactome of the osteoarthritis (OA) pathophysiological process in the cartilage. METHODS: We performed RNA sequencing in 130 samples (n=35 and n=30 pairs for messenger RNA (mRNA) and miRNA, respectively) on macroscopically preserved and lesioned OA cartilage from the same patient and performed differential expression (DE) analysis of miRNA and mRNAs. To build an OA-specific miRNA interactome, a prioritisation scheme was applied based on inverse Pearson's correlations and inverse DE of miRNAs and mRNAs. Subsequently, these were filtered by those present in predicted (TargetScan/microT-CDS) and/or experimentally validated (miRTarBase/TarBase) public databases. Pathway enrichment analysis was applied to elucidate OA-related pathways likely mediated by miRNA regulatory mechanisms. RESULTS: We found 142 miRNAs and 2387 mRNAs to be differentially expressed between lesioned and preserved OA articular cartilage. After applying prioritisation towards likely miRNA-mRNA targets, a regulatory network of 62 miRNAs targeting 238 mRNAs was created. Subsequent pathway enrichment analysis of these mRNAs (or genes) elucidated that genes within the 'nervous system development' are likely mediated by miRNA regulatory mechanisms (familywise error=8.4×10-5). Herein NTF3 encodes neurotrophin-3, which controls survival and differentiation of neurons and which is closely related to the nerve growth factor. CONCLUSIONS: By an integrated approach of miRNA and mRNA sequencing data of OA cartilage, an OA miRNA interactome and related pathways were elucidated. Our functional data demonstrated interacting levels at which miRNA affects expression of genes in the cartilage and exemplified the complexity of functionally validating a network of genes that may be targeted by multiple miRNAs.


Assuntos
Cartilagem Articular/química , Biologia Computacional/métodos , MicroRNAs/análise , Osteoartrite/genética , RNA Mensageiro/análise , Humanos , Análise de Sequência de RNA
19.
Rheumatology (Oxford) ; 58(6): 1065-1074, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649473

RESUMO

OBJECTIVES: Previously, we have shown the involvement of Wnt-activated protein Wnt-1-induced signaling protein 1 (WISP1) in the development of OA in mice. Here, we aimed to characterize the relation between WISP1 expression and human OA and its regulatory epigenetic determinants. METHODS: Preserved and lesioned articular cartilage from end-stage OA patients and non-OA-diagnosed individuals was collected. WISP1 expression was determined using immunohistochemistry and damage was classified using Mankin scoring. RNA expression and DNA methylation were assessed in silico from genome-wide datasets (microarray analysis and RNA sequencing, and 450 k-methylationarrays, respectively). Effects of WISP1 were tested in pellet cultures of primary human chondrocytes. RESULTS: WISP1 expression in cartilage of OA patients was increased compared with non-OA-diagnosed controls and, within OA patients, WISP1 was even higher in lesioned compared with preserved regions, with expression strongly correlating with Mankin score. In early symptomatic OA patients with disease progression, higher synovial WISP1 expression was observed as compared with non-progressors. Notably, increased WISP1 expression was inversely correlated with methylation levels of a positional CpG-dinucleotide (cg10191240), with lesioned areas showing strong hypomethylation for this CpG as compared with preserved cartilage. Additionally, we observed that methylation levels were allele-dependent for an intronic single-nucleotide polymorphism nearby cg10191240. Finally, addition of recombinant WISP1 to pellets of primary chondrocytes strongly inhibited deposition of extracellular matrix as reflected by decreased pellet circumference, proteoglycan content and decreased expression of matrix components. CONCLUSION: Increased WISP1 expression is found in lesioned human articular cartilage, and appears epigenetically regulated via DNA methylation. In vitro assays suggest that increased WISP1 is detrimental for cartilage integrity.


Assuntos
Proteínas de Sinalização Intercelular CCN/metabolismo , Cartilagem Articular/metabolismo , Osteoartrite do Joelho/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Condrócitos/metabolismo , Metilação de DNA , Epigênese Genética , Humanos , Articulação do Joelho/metabolismo
20.
PLoS Genet ; 12(10): e1006260, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27701424

RESUMO

Osteoarthritis is one of the most frequent and disabling diseases of the elderly. Only few genetic variants have been identified for osteoarthritis, which is partly due to large phenotype heterogeneity. To reduce heterogeneity, we here examined cartilage thickness, one of the structural components of joint health. We conducted a genome-wide association study of minimal joint space width (mJSW), a proxy for cartilage thickness, in a discovery set of 13,013 participants from five different cohorts and replication in 8,227 individuals from seven independent cohorts. We identified five genome-wide significant (GWS, P≤5·0×10-8) SNPs annotated to four distinct loci. In addition, we found two additional loci that were significantly replicated, but results of combined meta-analysis fell just below the genome wide significance threshold. The four novel associated genetic loci were located in/near TGFA (rs2862851), PIK3R1 (rs10471753), SLBP/FGFR3 (rs2236995), and TREH/DDX6 (rs496547), while the other two (DOT1L and SUPT3H/RUNX2) were previously identified. A systematic prioritization for underlying causal genes was performed using diverse lines of evidence. Exome sequencing data (n = 2,050 individuals) indicated that there were no rare exonic variants that could explain the identified associations. In addition, TGFA, FGFR3 and PIK3R1 were differentially expressed in OA cartilage lesions versus non-lesioned cartilage in the same individuals. In conclusion, we identified four novel loci (TGFA, PIK3R1, FGFR3 and TREH) and confirmed two loci known to be associated with cartilage thickness.The identified associations were not caused by rare exonic variants. This is the first report linking TGFA to human OA, which may serve as a new target for future therapies.


Assuntos
Osteoartrite do Quadril/genética , Fosfatidilinositol 3-Quinases/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Fator de Crescimento Transformador alfa/genética , Trealase/genética , Idoso , Idoso de 80 Anos ou mais , Cartilagem/patologia , Classe Ia de Fosfatidilinositol 3-Quinase , Feminino , Heterogeneidade Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Articulação do Quadril/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite do Quadril/patologia , Polimorfismo de Nucleotídeo Único , Sequências Reguladoras de Ácido Nucleico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA