RESUMO
To understand 2009 pandemic influenza A virus subtype H1N1 (A[H1N1]pdm09) circulation in West Africa, we collected influenza surveillance data from ministries of health and influenza laboratories in 10 countries, including Cameroon, from 4 May 2009 through 3 April 2010. A total of 10,203 respiratory specimens were tested, of which 25% were positive for influenza virus. Until the end of December 2009, only 14% of all detected strains were A(H1N1)pdm09, but the frequency increased to 89% from January through 3 April 2010. Five West African countries did not report their first A(H1N1)pdm09 case until 6 months after the emergence of the pandemic in North America, in April 2009. The time from first detection of A(H1N1)pdm09 in a country to the time of A(H1N1)pdm09 predominance varied from 0 to 37 weeks. Seven countries did not report A(H1N1)pdm09 predominance until 2010. Introduction and transmission of A(H1N1)pdm09 were delayed in this region.
Assuntos
Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/epidemiologia , Influenza Humana/virologia , Pandemias , Adulto , África Ocidental/epidemiologia , Criança , Pré-Escolar , Humanos , Lactente , Orthomyxoviridae , Fatores de TempoRESUMO
BACKGROUND: The majority of emerging infectious diseases are zoonotic (transmissible between animals and humans) in origin, and therefore integrated surveillance of disease events in humans and animals has been recommended to support effective global response to disease emergence. While in the past decade there has been extensive global surveillance for highly pathogenic avian influenza (HPAI) infection in both animals and humans, there have been few attempts to compare these data streams and evaluate the utility of such integration. METHODOLOGY: We compared reports of bird outbreaks of HPAI H5N1 in Egypt for 2006-2011 compiled by the World Organisation for Animal Health (OIE) and the UN Food and Agriculture Organization (FAO) EMPRESi reporting system with confirmed human H5N1 cases reported to the World Health Organization (WHO) for Egypt during the same time period. PRINCIPAL FINDINGS: Both human cases and bird outbreaks showed a cyclic pattern for the country as a whole, and there was a statistically significant temporal correlation between the data streams. At the governorate level, the first outbreak in birds in a season usually but not always preceded the first human case, and the time lag between events varied widely, suggesting regional differences in zoonotic risk and/or surveillance effectiveness. In a multivariate risk model, lower temperature, lower urbanization, higher poultry density, and the recent occurrence of a bird outbreak were associated with increased risk of a human case of HPAI in the same governorate, although the positive predictive value of a bird outbreak was low. CONCLUSIONS: Integrating data streams of surveillance for human and animal cases of zoonotic disease holds promise for better prediction of disease risk and identification of environmental and regional factors that can affect risk. Such efforts can also point out gaps in human and animal surveillance systems and generate hypotheses regarding disease transmission.
Assuntos
Influenza Aviária/epidemiologia , Influenza Humana/epidemiologia , Animais , Surtos de Doenças , Egito/epidemiologia , Monitoramento Epidemiológico , Humanos , Virus da Influenza A Subtipo H5N1 , Influenza Aviária/transmissão , Influenza Humana/transmissão , Aves Domésticas , Vigilância em Saúde Pública , Fatores de RiscoRESUMO
UNLABELLED: INTRODUCTION AND SETTING: Our analysis compares the most comprehensive epidemiologic and virologic surveillance data compiled to date for laboratory-confirmed H1N1pdm patients between 1 April 2009 - 31 January 2010 from five temperate countries in the Southern Hemisphere-Argentina, Australia, Chile, New Zealand, and South Africa. OBJECTIVE: We evaluate transmission dynamics, indicators of severity, and describe the co-circulation of H1N1pdm with seasonal influenza viruses. RESULTS: In the five countries, H1N1pdm became the predominant influenza strain within weeks of initial detection. South Africa was unique, first experiencing a seasonal H3N2 wave, followed by a distinct H1N1pdm wave. Compared with the 2007 and 2008 influenza seasons, the peak of influenza-like illness (ILI) activity in four of the five countries was 3-6 times higher with peak ILI consultation rates ranging from 35/1,000 consultations/week in Australia to 275/100,000 population/week in New Zealand. Transmission was similar in all countries with the reproductive rate ranging from 1.2-1.6. The median age of patients in all countries increased with increasing severity of disease, 4-14% of all hospitalized cases required critical care, and 26-68% of fatal patients were reported to have ≥1 chronic medical condition. Compared with seasonal influenza, there was a notable downward shift in age among severe cases with the highest population-based hospitalization rates among children <5 years old. National population-based mortality rates ranged from 0.8-1.5/100,000. CONCLUSIONS: The difficulty experienced in tracking the progress of the pandemic globally, estimating its severity early on, and comparing information across countries argues for improved routine surveillance and standardization of investigative approaches and data reporting methods.