Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Microbiol ; 23(1): 377, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38036970

RESUMO

BACKGROUND: Growing evidence suggests that soil microbes can improve plant fitness under drought. However, in potato, the world's most important non-cereal crop, the role of the rhizosphere microbiome under drought has been poorly studied. Using a cultivation independent metabarcoding approach, we examined the rhizosphere microbiome of two potato cultivars with different drought tolerance as a function of water regime (continuous versus reduced watering) and manipulation of soil microbial diversity (i.e., natural (NSM), vs. disturbed (DSM) soil microbiome). RESULTS: Water regime and soil pre-treatment showed a significant interaction with bacterial community composition of the sensitive (HERBST) but not the resistant cultivar (MONI). Overall, MONI had a moderate response to the treatments and its rhizosphere selected Rhizobiales under reduced watering in NSM soil, whereas Bradyrhizobium, Ammoniphilus, Symbiobacterium and unclassified Hydrogenedensaceae in DSM soil. In contrast, HERBST response to the treatments was more pronounced. Notably, in NSM soil treated with reduced watering, the root endophytic fungus Falciphora and many Actinobacteriota members (Streptomyces, Glycomyces, Marmoricola, Aeromicrobium, Mycobacterium and others) were largely represented. However, DSM soil treatment resulted in no fungal taxa and fewer enrichment of these Actinobacteriota under reduced watering. Moreover, the number of bacterial core amplicon sequence variants (core ASVs) was more consistent in MONI regardless of soil pre-treatment and water regimes as opposed to HERBST, in which a marked reduction of core ASVs was observed in DSM soil. CONCLUSIONS: Besides the influence of soil conditions, our results indicate a strong cultivar-dependent relationship between the rhizosphere microbiome of potato cultivars and their capacity to respond to perturbations such as reduced soil moisture. Our study highlights the importance of integrating soil conditions and plant genetic variability as key factors in future breeding programs aiming to develop drought resistance in a major food crop like potato. Elucidating the molecular mechanisms how plants recruit microbes from soil which help to mitigate plant stress and to identify key microbial taxa, which harbour the respective traits might therefore be an important topic for future research.


Assuntos
Actinomycetales , Microbiota , Solanum tuberosum , Streptomyces , Rizosfera , Microbiologia do Solo , Solanum tuberosum/microbiologia , Melhoramento Vegetal , Microbiota/genética , Solo , Plantas , Água , Raízes de Plantas/microbiologia
2.
Molecules ; 27(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35056669

RESUMO

Taking into account that many advantages have been associated with the consumption of spirulina (microalgae) in terms of antioxidant capacity, anticancer, anti-inflammatory, and anti-aging activities, the study focuses on spirulina supplementation of semolina-based pasta. Fresh pasta was prepared by mixing semolina flour (Triticum durum) with an addition of 3, 5, 7, and 10% (w/w) of spirulina (Arthrospira platensis) powder. Physicochemical and nutritional analyses were done on raw materials, and on fresh pasta before and after cooking. Sensorial analysis was done shortly after cooking pastas. Spirulina had a high content of protein (71.34%), with all the essential amino acids, a high total fiber (8.45%), as well as ash content (5.93%), which significantly increased the nutritional value of the obtained fresh pasta. Supplemented pastas have a significantly better amino acid profile and higher total fiber content (up to 2.99 g/100 g d.m.) than the control sample. Moreover, the addition of spirulina had a significant effect on the pasta's color, weight gain, and cooking loss after being cooked. The addition of spirulina also affected the scores obtained for the individual parameters (texture, color, flavor, taste, and overall acceptability) of the sensory evaluation.


Assuntos
Antioxidantes/farmacologia , Suplementos Nutricionais , Farinha/análise , Manipulação de Alimentos/métodos , Spirulina/química , Triticum/química , Cor , Culinária , Fibras na Dieta , Dureza , Humanos
3.
Molecules ; 27(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35335343

RESUMO

Fruit of Saskatoon (Amelanchier alnifolia Nutt.) are a good source of bioactive compounds, such as polyphenols, including anthocyanins, as well as vitamins, macro- and microelements and fibre. By treating Saskatoon fruits with gaseous ozone, and adding the material as an enhancer to barley beers, it is possible to impact the contents of bioactive compounds in the produced fruit beers. Sensory tests showed that beers made from barley with addition of Saskatoon fruit of the 'Smoky' cultivar were characterised by the most balanced taste and aroma. Physicochemical analyses of fruit beers, produced with Saskatoon fruit pulp added on the seventh day of fermentation, showed that the beers enhanced with ozone-treated and untreated 'Smoky' Saskatoon fruits had the highest contents of alcohol, 5.51% v/v and 5.66% v/v, respectively, as well as total polyphenol contents of 395 mg GAE/L and 401 mg GAE/L, respectively, and higher antioxidant activity (assessed using DPPH•, FRAP and ABTS+• assays). It was demonstrated that the ozonation process led to a decrease in the contents of neochlorogenic acid, on average by 91.00%, and of caffeic acid by 20.62%, relative to the beers enhanced with 'Smoky' Saskatoon fruits not subjected to ozone treatment. The present study shows that Saskatoon fruits can be used in the production of beer, and the Canadian cultivar 'Smoky' is recommended for this purpose.


Assuntos
Ozônio , Rosaceae , Antocianinas/química , Antioxidantes/química , Cerveja/análise , Canadá , Frutas/química , Ozônio/análise , Rosaceae/química
4.
Molecules ; 26(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34361794

RESUMO

Wheat bread, produced by the single-phase method, is a common food consumed all over the world. Due to changes in lifestyle and nutritional trends, alternative raw materials are sought to increase the nutritional value and improve the taste of daily consumed products. Additionally, customers seek a wide variety of foods, especially when it comes to basic foods. Nuts, such as coconuts or chestnuts, might provide an attractive flavour with benefits to the nutritional quality. In this study, the effect of substituting wheat flour with coconut or chestnut flour (flour contribution level: 5, 10, 15, 30, 50% w/w), was evaluated in terms of the breads specific volume, texture, colour, nutritional composition, and dietary fibre fraction contents. Moreover, a sensory evaluation was conducted to assess potential consumer acceptance. Based on the consumer's perception, the overall acceptance of bread with 15% w/w of coconut and chestnut flour was in privilege compared to the control sample. As a result, taking all of the tested parameters into account, the breads with 5, 10, and 15% supplementation of chestnut or coconut flour were still of good quality compared to the wheat bread and their fibre content was significantly higher.


Assuntos
Aesculus/química , Pão/análise , Cocos/química , Fibras na Dieta/análise , Farinha/análise , Triticum/química , Culinária/métodos , Análise Fatorial , Tecnologia de Alimentos/métodos , Alimentos Fortificados/análise , Humanos , Olfato/fisiologia , Paladar/fisiologia
5.
Molecules ; 24(17)2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31466303

RESUMO

This study was designed to evaluate the effects of purple potato extract of the Blue Congo variety (PP) on diabetes and its antioxidant activities after two-week administration tostreptozotocin (STZ)-induced diabetic rats. The activities of PP were evaluated at a dose of 165 mg/kg body weight (b.w.) by estimating biochemical changes in blood plasma and through a histopathological study of kidney, muscles, and liver tissue. We evaluated the effect of treatment with extract on glucose level, glycated hemoglobin, activities of enzymatic antioxidants (including superoxide dismutase, glutathione peroxidase, and catalase), and lipid peroxidation. Moreover, we determined advanced glycation end-products (AGEs), advanced oxidation protein products (AOPPs), and the level of oxidative modified proteins (OMPs) as markers of carbonyl-oxidative stress in rats with diabetes. Using high-performance liquid chromatography, we identified five anthocyanins and six phenolic acids in the extract from Blue Congo with the dominant acylated anthocyanin as petunidin-3-p-coumaroyl-rutinoside-5-glucoside. The administration of Blue Congo extract lowered blood glucose, improved glucose tolerance, and decreased the amount of glycated hemoglobin. Furthermore, PP demonstrated an antioxidative effect, suppressed malondialdehyde levels, and restored antioxidant enzyme activities in diabetic rats. After administration of PP, we also noticed inhibition of OMP, AGE, and AOPP formation in the rats' blood plasma.


Assuntos
Antioxidantes/administração & dosagem , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Extratos Vegetais/administração & dosagem , Solanum tuberosum/química , Animais , Antocianinas/administração & dosagem , Antocianinas/química , Antocianinas/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Glicemia/análise , Glicemia/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Diabetes Mellitus Experimental/sangue , Hemoglobinas Glicadas/análise , Hemoglobinas Glicadas/efeitos dos fármacos , Hidroxibenzoatos/administração & dosagem , Hidroxibenzoatos/química , Hidroxibenzoatos/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Masculino , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar , Estreptozocina
6.
J Sci Food Agric ; 98(13): 5027-5036, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29603254

RESUMO

BACKGROUND: This study provides the first detailed investigation into the effect of partially substituting barley malt with quinoa (Chenopodium quinoa Willd.) on the characteristics of wort and beer. Quinoa seeds and flakes were compared in terms of their suitability for brewing. The benefits of applying a commercial enzyme mixture during beer production with quinoa were also investigated. RESULTS: These findings show that quinoa is a good starchy raw material for brewing. Even without exogenous enzymes, it is possible to substitute barley malt with up to 30% quinoa. The form in which quinoa is used has a negligible influence on the quality of the wort and beer. The foam stability of beer made with quinoa was better than that of all-malt beer, despite there being a lower level of soluble nitrogen in quinoa beer in comparison with all-malt beer and more than twice the amount of fat in quinoa in comparison to barley malt. CONCLUSION: The addition of unmalted quinoa does not give unpleasant characteristics to the beer and was even found to have a positive effect on its overall sensory quality. This offers brewers an opportunity to develop good beers with new sensory characteristics. © 2018 Society of Chemical Industry.


Assuntos
Cerveja/análise , Chenopodium quinoa/química , Aditivos Alimentares/química , Manipulação de Alimentos/métodos , Hordeum/química , Fermentação , Humanos , Sementes/química , Paladar
7.
FEMS Microbiol Ecol ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839598

RESUMO

Rhizosphere microbial communities play a substantial role in plant productivity. We studied the rhizosphere bacteria and fungi of 51 distinct potato cultivars grown under similar greenhouse conditions using a metabarcoding approach. As expected, individual cultivars were the most important determining factor of the rhizosphere microbial composition; however, differences were also obtained when grouping cultivars according to their growth characteristics. We demonstrated that plant growth characteristics were strongly related to deterministic and stochastic assembly processes of bacterial and fungal communities, respectively. The bacterial genera Arthrobacter and Massilia (known to produce IAA and siderophores) exhibited greater relative abundance in high- and medium performing cultivars. Bacterial co-occurrence networks were larger in the rhizosphere of these cultivars and were characterized by a distinctive combination of plant beneficial Proteobacteria and Actinobacteria along with a module of diazotrophs namely Azospira, Azoarcus, Azohydromonas. Conversely, the network within low performing cultivars revealed the lowest nodes, hub taxa, edges density, robustness and the highest average path length resulting in reduced microbial associations, which may potentially limit their effectiveness in promoting plant growth. Our findings established a clear pattern between plant productivity and the rhizosphere microbiome composition and structure for the investigated potato cultivars, offering insights for future management practices.

8.
Rocz Panstw Zakl Hig ; 63(1): 37-42, 2012.
Artigo em Polonês | MEDLINE | ID: mdl-22642068

RESUMO

BACKGROUND: Food in its composition contains anti-nutritional substances that reduces or prevents the use of valuable nutrients. The oxalic acid, as phytate and dietary fiber, occurs naturally in foods of plant origin, to which the beer is classified. The negative effect of oxalic acid is reducing the bioavailability of calcium and magnesium, and disorder of metabolism of the body's absorption of these elements from the diet. The excess of oxalic acid and its salt in the diet contributes to the formation of certain diseases, such as oxalate urolithiasis, osteoporosis, arthritis, etc. Due to the diuretic effect of beer, drinking moderate amounts of it is recommended as a preventive and support urinary tract disorders. OBJECTIVE: The aim of this study was to determine and comparison the oxalic acid content in selected beers available on the Polish market. MATERIAL AND METHOD: Fifty seven samples of beer were used for this study. These samples were divided into three groups depending on the alcohol concentration declared by the producers (1st group--below 5.5% vol., 2nd group--from 5.5 to 6.5% vol., 3rd group--above 6.5% vol.). The beer samples were incubated in the ultrasonic bath for 15 minutes following pH adjustments up to pH = 2 with the 1 mol/L hydrochloric acid to transform calcium oxalates into soluble form, then filtered. The oxalic acid concentration was measured by high performance liquid chromatography (HPLC) with conductivity detection. RESULTS: The concentration of oxalic acid in tested samples of beer ranged from 1.8 to 30.3 mg/L. No considerable differences between the concentration of oxalic acid in the three tested group of beer with the various content of the alcohol were found. Basing on the average concentrations of the oxalic acid in the different groups of the tested beers the positive trend in oxalic acid concentration related to the increase of alcohol could be observed. CONCLUSIONS: The very low concentration of oxalic acid allows to classify beer as food product safe for the human health in terms of low oxalates content.


Assuntos
Poluentes Atmosféricos/análise , Cerveja/análise , Contaminação de Alimentos/análise , Valor Nutritivo , Ácido Oxálico/análise , Cromatografia Líquida de Alta Pressão , Qualidade de Produtos para o Consumidor , Humanos , Concentração Máxima Permitida , Polônia , Valores de Referência
9.
Nanomaterials (Basel) ; 12(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35159787

RESUMO

The brewing industry generates a substantial amount of by-products rich in polyphenols, carbohydrates, sugars, sulfates, nitrogen compounds, organic carbon, and several elements, including chlorine, magnesium, and phosphorus. Although limited quantities of these by-products are used in fertilizers and composts, a large amount is discarded as waste. Therefore, it is crucial to identify different ways of valorizing the by-products. Research regarding the valorization of the brewery by-products is still in its nascent stage; therefore, it still has high potential. Herein, we report the valorization of the brewery by-product from the filtration stage of the brewing process (BW9) to synthesize silver nanocomposites as this waste has remained largely unexplored. The BW9 nanocomposites have been compared to those obtained from the brewery product B. The chemical composition analysis of BW9 and B revealed several organic moieties capable of reducing metal salts and capping the formed nanoparticles. Therefore, the brewery waste from stage 9 was valorized as a precursor and added to silver-based precursor at various temperatures (25, 50, and 80 °C) and for various time periods (10, 30, and 120 min) to synthesize silver nanocomposites. The nanocomposites obtained using BW9 were compared to those obtained using the main product of the brewing industry, beer (B). Synthesized nanocomposites composed of AgCl as a major phase and silver metal (Agmet) was incorporated in minor quantities. In addition, Ag3PO4 was also found in B nanocomposites in minor quantities (up to 34 wt.%). The surface morphology depicted globular nanoparticles with layered structures. Small ball-like aggregates on the layer representative of Ag3PO4 were observed in B nanocomposites. The surface of nanocomposites was capped with organic content and functional groups present in the brewery products. The nanocomposites demonstrated high antibacterial activity against Escherichia coli (E. coli), with BW9 nanocomposites exhibiting a higher activity than B nanocomposites.

10.
Toxins (Basel) ; 13(12)2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34941704

RESUMO

This study investigated the impact of malting of six wheat cultivars inoculated with Fusarium culmorum on the dynamics of content changes of selected Fusarium toxins. The grains of all the tested cultivars showed a high content of deoxynivalenol (DON), zearalenone (ZEN), and their derivatives, whereas nivalenol (NIV) and its glucoside were found only in the Legenda cultivar. Our experiments confirmed that the malting process of wheat grain enables the secondary growth of Fusarium, and mycotoxin biosynthesis. The levels of toxins in malt were few-fold higher than those in grain; an especially high increase was noted in the case of ZEN and its sulfate as the optimal temperature and pH conditions for the biosynthesis of these toxins by the pathogen are similar to those used in the grain malting process. This is the first paper reporting that during the malting process, biosynthesis of ZEN sulfate occurs, instead of glycosylation, which is a typical modification of mycotoxins by plant detoxication enzymes.


Assuntos
Manipulação de Alimentos , Fusarium/metabolismo , Triticum/microbiologia , Biotransformação , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Tricotecenos/metabolismo , Triticum/genética , Zearalenona/metabolismo
11.
Toxins (Basel) ; 13(2)2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670424

RESUMO

The transformation of deoxynivalenol (DON), nivalenol (NIV), and their glucosides (DON3G and NIV3G) during the malting of grains of two wheat varieties was studied. The concentration of DON3G and NIV3G started to increase significantly before the concentration of DON and NIV increased. This may reflect the transformation of the parent mycotoxin forms into their glucosides due to xenobiotic detoxification reactions. After a sharp rise during the last 2 days of the process (day 6 and 7), the DON concentration reached 3010 ± 338 µg/kg in the Legenda wheat-based malt and 4678 ± 963 µg/kg in the Pokusa wheat-based malt. The NIV concentration, at 691 ± 65 µg/kg, remained the same as that in the dry grain. The concentration of DON3G in the Legenda and Pokusa wheat-based malt was five and three times higher, respectively, than that in the steeped grain. The concentration of NIV3G in the Legenda wheat-based malt was more than twice as high as that in the steeped grain. The sharp increase in the concentration of DON at the end of the malting process reflected the high pathogen activity. We set aside some samples to study a batch that was left undisturbed without turning and aeration, for the entire period of malting. The concentration of DON in the malt produced from the latter batch was 135% and 337% higher, for Legenda and Pokusa, respectively, than that in the malt produced from the batch that was turned and aerated. The NIV concentration was 22% higher in the latter batch.


Assuntos
Grão Comestível/microbiologia , Manipulação de Alimentos , Microbiologia de Alimentos , Fusarium/metabolismo , Tricotecenos/análise , Triticum/microbiologia , Biotransformação , Glucosídeos , Fatores de Tempo
12.
Nanomaterials (Basel) ; 11(10)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34685100

RESUMO

Brewery wastes from stage 5 (Wort precipitate: BW5) and stage 7 (Brewer's spent yeast: BW7) were valorized for the synthesis of silver phosphate nanocomposites. Nanoparticles were synthesized by converting silver salt in the presence of brewery wastes at different temperatures (25, 50, and 80 °C) and times (10, 30, and 120 min). Unexpectedly, BW7 yielded Ag3PO4 nanoparticles with minor contents of AgCl and Ag metal (Agmet). Contrastingly, BW5 produced AgCl nanoparticles with minor amounts of Ag3PO4 and Agmet. Nanocomposites with different component ratios were obtained by simply varying the synthesis temperature and time. The morphology of the nanocomposites contained ball-like structures representative of Ag3PO4 and stacked layers and fused particles representing AgCl and Agmet. The capping on the nanoparticles contained organic groups from the brewery by-products, and the surface overlayer had a rich chemical composition. The organic overlayers on BW7 nanocomposites were thinner than those on BW5 nanocomposites. Notably, the nanocomposites exhibited high antibacterial activity against Escherichia coli ATCC 25922. The antibacterial activity was higher for BW7 nanocomposites due to a larger silver phosphate content in the composition and a thin organic overlayer. The growth of Agmet in the structure adversely affected the antimicrobial property of the nanocomposites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA