Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurol ; 271(2): 733-747, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37891417

RESUMO

The role of genetic testing in neurologic clinical practice has increased dramatically in recent years, driven by research on genetic causes of neurologic disease and increased availability of genetic sequencing technology. Genetic testing is now indicated for adults with a wide range of common neurologic conditions. The potential clinical impacts of a genetic diagnosis are also rapidly expanding, with a growing list of gene-specific treatments and clinical trials, in addition to important implications for prognosis, surveillance, family planning, and diagnostic closure. The goals of this review are to provide practical guidance for clinicians about the role of genetics in their practice and to provide the neuroscience research community with a broad survey of current progress in this field. We aim to answer three questions for the neurologist in practice: Which of my patients need genetic testing? What testing should I order? And how will genetic testing help my patient? We focus on common neurologic disorders and presentations to the neurology clinic. For each condition, we review the most current guidelines and evidence regarding indications for genetic testing, expected diagnostic yield, and recommended testing approach. We also focus on clinical impacts of genetic diagnoses, highlighting a number of gene-specific therapies recently approved for clinical use, and a rapidly expanding landscape of gene-specific clinical trials, many using novel nucleotide-based therapeutic modalities like antisense oligonucleotides and gene transfer. We anticipate that more widespread use of genetic testing will help advance therapeutic development and improve the care, and outcomes, of patients with neurologic conditions.


Assuntos
Doenças do Sistema Nervoso , Neurociências , Adulto , Humanos , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/terapia , Testes Genéticos , Neurologistas , Instituições de Assistência Ambulatorial
2.
Neurology ; 86(24): 2295-302, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27194384

RESUMO

Remarkable advances in our understanding of the genetic contributions to amyotrophic lateral sclerosis (ALS) have sparked discussion and debate about whether clinical genetic testing should routinely be offered to patients with ALS. A related, but distinct, question is whether presymptomatic genetic testing should be offered to family members who may be at risk for developing ALS. Existing guidelines for presymptomatic counseling and testing are mostly based on small number of individuals, clinical judgment, and experience from other neurodegenerative disorders. Over the course of the last 8 years, we have provided testing and 317 genetic counseling sessions (including predecision, pretest, posttest, and ad hoc counseling) to 161 first-degree family members participating in the Pre-Symptomatic Familial ALS Study (Pre-fALS), as well as testing and 75 posttest counseling sessions to 63 individuals with familial ALS. Based on this experience, and the real-world challenges we have had to overcome in the process, we recommend an updated set of guidelines for providing presymptomatic genetic counseling and testing to people at high genetic risk for developing ALS. These recommendations are especially timely and relevant given the growing interest in studying presymptomatic ALS.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/genética , Aconselhamento Genético/métodos , Testes Genéticos/métodos , Humanos , Guias de Prática Clínica como Assunto , Sintomas Prodrômicos
3.
Mol Neurodegener ; 7: 8, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22423893

RESUMO

BACKGROUND: The form(s) of amyloid-ß peptide (Aß) associated with the pathology characteristic of Alzheimer's disease (AD) remains unclear. In particular, the neurotoxicity of intraneuronal Aß accumulation is an issue of considerable controversy; even the existence of Aß deposits within neurons has recently been challenged by Winton and co-workers. These authors purport that it is actually intraneuronal APP that is being detected by antibodies thought to be specific for Aß. To further address this issue, an anti-Aß antibody was developed (MOAB-2) that specifically detects Aß, but not APP. This antibody allows for the further evaluation of the early accumulation of intraneuronal Aß in transgenic mice with increased levels of human Aß in 5xFAD and 3xTg mice. RESULTS: MOAB-2 (mouse IgG2b) is a pan-specific, high-titer antibody to Aß residues 1-4 as demonstrated by biochemical and immunohistochemical analyses (IHC), particularly compared to 6E10 (a commonly used commercial antibody to Aß residues 3-8). MOAB-2 did not detect APP or APP-CTFs in cell culture media/lysates (HEK-APPSwe or HEK-APPSwe/BACE1) or in brain homogenates from transgenic mice expressing 5 familial AD (FAD) mutation (5xFAD mice). Using IHC on 5xFAD brain tissue, MOAB-2 immunoreactivity co-localized with C-terminal antibodies specific for Aß40 and Aß42. MOAB-2 did not co-localize with either N- or C-terminal antibodies to APP. In addition, no MOAB-2-immunoreactivity was observed in the brains of 5xFAD/BACE-/- mice, although significant amounts of APP were detected by N- and C-terminal antibodies to APP, as well as by 6E10. In both 5xFAD and 3xTg mouse brain tissue, MOAB-2 co-localized with cathepsin-D, a marker for acidic organelles, further evidence for intraneuronal Aß, distinct from Aß associated with the cell membrane. MOAB-2 demonstrated strong intraneuronal and extra-cellular immunoreactivity in 5xFAD and 3xTg mouse brain tissues. CONCLUSIONS: Both intraneuronal Aß accumulation and extracellular Aß deposition was demonstrated in 5xFAD mice and 3xTg mice with MOAB-2, an antibody that will help differentiate intracellular Aß from APP. However, further investigation is required to determine whether a molecular mechanism links the presence of intraneuronal Aß with neurotoxicity. As well, understanding the relevance of these observations to human AD patients is critical.


Assuntos
Peptídeos beta-Amiloides/análise , Precursor de Proteína beta-Amiloide/análise , Anticorpos/análise , Imuno-Histoquímica/métodos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/imunologia , Precursor de Proteína beta-Amiloide/imunologia , Animais , Anticorpos/imunologia , Especificidade de Anticorpos , Reações Antígeno-Anticorpo , Células Cultivadas , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Placa Amiloide/química , Placa Amiloide/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA