Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int Arch Occup Environ Health ; 93(2): 271-278, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31654126

RESUMO

PURPOSE: Work ability can be measured by the work ability index (WAI), and work-related questions measuring productivity loss in terms of quality and quantity of work. Dentists have high occupational risk of musculoskeletal pain and the exposure of ergonomic strain is already high during dental education. The aim was to evaluate work ability and productivity among dentists, and to identify gender differences and associations with sleep, stress, and reported frequent pain. METHODS: The study population comprised 187 dentists (123 women and 64 men) who had been working as dentists between 5 and 12 years. Participants completed a questionnaire regarding sleep, stress, presence of pain at different sites, work ability assessed by WAI, and productivity in terms of quality and quantity of work. RESULTS: Poor sleep quality and high level of stress were reported by 31% and 48.1% of participants, respectively, with no gender differences and no association with age. The prevalence of frequent pain ranged 6.4-46.5% with shoulders being the most prevalent site. Thirty-three percent reported reduced work ability. Poor sleep, high amount of stress, and multi-site pain were associated with decreased work ability. CONCLUSIONS: A high prevalence of pain was shown among dentists. Decreased work ability in terms of productivity loss was associated with poor sleep quality, high amount of stress, and multi-site pain. Preventive actions at the workplace should promote good musculoskeletal health, and measures taken, both individual and organizational, to minimize the risk of high, persistent stress and work-related pain.


Assuntos
Odontólogos , Dor Musculoesquelética/epidemiologia , Estresse Ocupacional , Sono , Adulto , Estudos de Coortes , Ergonomia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Inquéritos e Questionários , Suécia
2.
Neurology ; 102(5): e209138, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38354325

RESUMO

BACKGROUND AND OBJECTIVES: Cardiovascular disease contributes significantly to disease burden among many Indigenous populations. However, data on stroke incidence in Indigenous populations are sparse. We aimed to investigate what is known of stroke incidence in Indigenous populations of countries with a very high Human Development Index (HDI), locating the research in the broader context of Indigenous health. METHODS: We identified population-based stroke incidence studies published between 1990 and 2022 among Indigenous adult populations of developed countries using PubMed, Embase, and Global Health databases, without language restriction. We excluded non-peer-reviewed sources, studies with fewer than 10 Indigenous people, or not covering a 35- to 64-year minimum age range. Two reviewers independently screened titles, abstracts, and full-text articles and extracted data. We assessed quality using "gold standard" criteria for population-based stroke incidence studies, the Newcastle-Ottawa Scale for risk of bias, and CONSIDER criteria for reporting of Indigenous health research. An Indigenous Advisory Board provided oversight for the study. RESULTS: From 13,041 publications screened, 24 studies (19 full-text articles, 5 abstracts) from 7 countries met the inclusion criteria. Age-standardized stroke incidence rate ratios were greater in Aboriginal and Torres Strait Islander Australians (1.7-3.2), American Indians (1.2), Sámi of Sweden/Norway (1.08-2.14), and Singaporean Malay (1.7-1.9), compared with respective non-Indigenous populations. Studies had substantial heterogeneity in design and risk of bias. Attack rates, male-female rate ratios, and time trends are reported where available. Few investigators reported Indigenous stakeholder involvement, with few studies meeting any of the CONSIDER criteria for research among Indigenous populations. DISCUSSION: In countries with a very high HDI, there are notable, albeit varying, disparities in stroke incidence between Indigenous and non-Indigenous populations, although there are gaps in data availability and quality. A greater understanding of stroke incidence is imperative for informing effective societal responses to socioeconomic and health disparities in these populations. Future studies into stroke incidence in Indigenous populations should be designed and conducted with Indigenous oversight and governance to facilitate improved outcomes and capacity building. REGISTRATION INFORMATION: PROSPERO registration: CRD42021242367.


Assuntos
Povos Indígenas , Acidente Vascular Cerebral , Adulto , Feminino , Humanos , Masculino , Incidência , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/etnologia , Pessoa de Meia-Idade , Países Desenvolvidos
3.
Front Neurol ; 12: 661570, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967945

RESUMO

Background and Aims: Despite known Indigenous health and socioeconomic disadvantage in countries with a Very High Human Development Index, data on the incidence of stroke in these populations are sparse. With oversight from an Indigenous Advisory Board, we will undertake a systematic review of the incidence of stroke in Indigenous populations of developed countries or regions, with comparisons between Indigenous and non-Indigenous populations of the same region, though not between different Indigenous populations. Methods: Using PubMed, OVID-EMBASE, and Global Health databases, we will examine population-based incidence studies of stroke in Indigenous adult populations of developed countries published 1990-current, without language restriction. Non-peer-reviewed sources, studies including <10 Indigenous People, or with insufficient data to determine incidence, will be excluded. Two reviewers will independently validate the search strategies, screen titles and abstracts, and record reasons for rejection. Relevant articles will undergo full-text screening, with standard data extracted for all studies included. Quality assessment will include Sudlow and Warlow's criteria for population-based stroke incidence studies, the Newcastle-Ottawa Scale for risk of bias, and the CONSIDER checklist for Indigenous research. Results: Primary outcomes include crude, age-specific and/or age-standardized incidence of stroke. Secondary outcomes include overall stroke rates, incidence rate ratio and case-fatality. Results will be synthesized in figures and tables, describing data sources, populations, methodology, and findings. Within-population meta-analysis will be performed if, and where, methodologically sound and comparable studies allow this. Conclusion: We will undertake the first systematic review assessing disparities in stroke incidence in Indigenous populations of developed countries. Data outputs will be disseminated to relevant Indigenous stakeholders to inform public health and policy research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA