Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 133(7): 072502, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39213578

RESUMO

Excited states in ^{10}B were populated with the ^{10}B(p,p^{'}γ)^{10}B^{*} reaction at 8.5 MeV and their γ decay was investigated via coincidence γ-ray spectroscopy. The emitted γ rays were measured using large-volume LaBr_{3}:Ce and CeBr_{3} detectors placed in anti-Compton shields. This allowed the observation of weak γ-ray transitions, such as the M3 transition between the J^{π},T=0^{+},1 isobaric analog state (IAS) and the J^{π},T=3^{+},0 ground state and the E2 transition between the J^{π},T=2_{1}^{+},0 state and the IAS, i.e., performing measurements of branching ratios at the level of λ≥10^{-4}. For the first time in ^{10}B, the competing M1 and M3 transitions from the decay of the IAS have been observed in a γ spectroscopy experiment. The experimental results are compared with ab initio no-core shell model calculation using the newest version of the local position-space chiral N^{3}LO nucleon-nucleon interaction. The calculations reproduce correctly the ordering of the bound states in ^{10}B, and are in reasonable agreement with the observed branching ratios and reduced transition probabilities.

2.
Phys Rev Lett ; 131(2): 022501, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37505957

RESUMO

The ß decays from both the ground state and a long-lived isomer of ^{133}In were studied at the ISOLDE Decay Station (IDS). With a hybrid detection system sensitive to ß, γ, and neutron spectroscopy, the comparative partial half-lives (logft) have been measured for all their dominant ß-decay channels for the first time, including a low-energy Gamow-Teller transition and several first-forbidden (FF) transitions. Uniquely for such a heavy neutron-rich nucleus, their ß decays selectively populate only a few isolated neutron unbound states in ^{133}Sn. Precise energy and branching-ratio measurements of those resonances allow us to benchmark ß-decay theories at an unprecedented level in this region of the nuclear chart. The results show good agreement with the newly developed large-scale shell model (LSSM) calculations. The experimental findings establish an archetype for the ß decay of neutron-rich nuclei southeast of ^{132}Sn and will serve as a guide for future theoretical development aiming to describe accurately the key ß decays in the rapid-neutron capture (r-) process.

3.
Phys Rev Lett ; 125(19): 192501, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33216605

RESUMO

The ß decay of ^{208}Hg into the one-proton hole, one neutron-particle _{81}^{208}Tl_{127} nucleus was investigated at CERN-ISOLDE. Shell-model calculations describe well the level scheme deduced, validating the proton-neutron interactions used, with implications for the whole of the N>126, Z<82 quadrant of neutron-rich nuclei. While both negative and positive parity states with spin 0 and 1 are expected within the Q_{ß} window, only three negative parity states are populated directly in the ß decay. The data provide a unique test of the competition between allowed Gamow-Teller and Fermi, and first-forbidden ß decays, essential for the understanding of the nucleosynthesis of heavy nuclei in the rapid neutron capture process. Furthermore, the observation of the parity changing 0^{+}→0^{-}ß decay where the daughter state is core excited is unique, and can provide information on mesonic corrections of effective operators.

4.
Phys Rev Lett ; 118(16): 162502, 2017 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-28474931

RESUMO

A search for shape isomers in the ^{66}Ni nucleus was performed, following old suggestions of various mean-field models and recent ones, based on state-of-the-art Monte Carlo shell model (MCSM), all considering ^{66}Ni as the lightest nuclear system with shape isomerism. By employing the two-neutron transfer reaction induced by an ^{18}O beam on a ^{64}Ni target, at the sub-Coulomb barrier energy of 39 MeV, all three lowest-excited 0^{+} states in ^{66}Ni were populated and their γ decay was observed by γ-coincidence technique. The 0^{+} states lifetimes were assessed with the plunger method, yielding for the 0_{2}^{+}, 0_{3}^{+}, and 0_{4}^{+} decay to the 2_{1}^{+} state the B(E2) values of 4.3, 0.1, and 0.2 Weisskopf units (W.u.), respectively. MCSM calculations correctly predict the existence of all three excited 0^{+} states, pointing to the oblate, spherical, and prolate nature of the consecutive excitations. In addition, they account for the hindrance of the E2 decay from the prolate 0_{4}^{+} to the spherical 2_{1}^{+} state, although overestimating its value. This result makes ^{66}Ni a unique nuclear system, apart from ^{236,238}U, in which a retarded γ transition from a 0^{+} deformed state to a spherical configuration is observed, resembling a shape-isomerlike behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA