Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 533(7604): 539-42, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27225129

RESUMO

Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals. Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank. We identify 74 genome-wide significant loci associated with the number of years of schooling completed. Single-nucleotide polymorphisms associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioural phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because educational attainment is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric diseases.


Assuntos
Encéfalo/metabolismo , Escolaridade , Feto/metabolismo , Regulação da Expressão Gênica/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Doença de Alzheimer/genética , Transtorno Bipolar/genética , Cognição , Biologia Computacional , Interação Gene-Ambiente , Humanos , Anotação de Sequência Molecular , Esquizofrenia/genética , Reino Unido
2.
PLoS Genet ; 13(6): e1006812, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28614350

RESUMO

Phenotypic variance heterogeneity across genotypes at a single nucleotide polymorphism (SNP) may reflect underlying gene-environment (G×E) or gene-gene interactions. We modeled variance heterogeneity for blood lipids and BMI in up to 44,211 participants and investigated relationships between variance effects (Pv), G×E interaction effects (with smoking and physical activity), and marginal genetic effects (Pm). Correlations between Pv and Pm were stronger for SNPs with established marginal effects (Spearman's ρ = 0.401 for triglycerides, and ρ = 0.236 for BMI) compared to all SNPs. When Pv and Pm were compared for all pruned SNPs, only BMI was statistically significant (Spearman's ρ = 0.010). Overall, SNPs with established marginal effects were overrepresented in the nominally significant part of the Pv distribution (Pbinomial <0.05). SNPs from the top 1% of the Pm distribution for BMI had more significant Pv values (PMann-Whitney = 1.46×10-5), and the odds ratio of SNPs with nominally significant (<0.05) Pm and Pv was 1.33 (95% CI: 1.12, 1.57) for BMI. Moreover, BMI SNPs with nominally significant G×E interaction P-values (Pint<0.05) were enriched with nominally significant Pv values (Pbinomial = 8.63×10-9 and 8.52×10-7 for SNP × smoking and SNP × physical activity, respectively). We conclude that some loci with strong marginal effects may be good candidates for G×E, and variance-based prioritization can be used to identify them.


Assuntos
HDL-Colesterol/genética , LDL-Colesterol/genética , Interação Gene-Ambiente , Obesidade/genética , Índice de Massa Corporal , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Feminino , Heterogeneidade Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Obesidade/sangue , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Fatores de Risco , Fumar/genética , População Branca/genética
3.
Am J Hum Genet ; 99(1): 8-21, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27346685

RESUMO

Red blood cell (RBC) traits are important heritable clinical biomarkers and modifiers of disease severity. To identify coding genetic variants associated with these traits, we conducted meta-analyses of seven RBC phenotypes in 130,273 multi-ethnic individuals from studies genotyped on an exome array. After conditional analyses and replication in 27,480 independent individuals, we identified 16 new RBC variants. We found low-frequency missense variants in MAP1A (rs55707100, minor allele frequency [MAF] = 3.3%, p = 2 × 10(-10) for hemoglobin [HGB]) and HNF4A (rs1800961, MAF = 2.4%, p < 3 × 10(-8) for hematocrit [HCT] and HGB). In African Americans, we identified a nonsense variant in CD36 associated with higher RBC distribution width (rs3211938, MAF = 8.7%, p = 7 × 10(-11)) and showed that it is associated with lower CD36 expression and strong allelic imbalance in ex vivo differentiated human erythroblasts. We also identified a rare missense variant in ALAS2 (rs201062903, MAF = 0.2%) associated with lower mean corpuscular volume and mean corpuscular hemoglobin (p < 8 × 10(-9)). Mendelian mutations in ALAS2 are a cause of sideroblastic anemia and erythropoietic protoporphyria. Gene-based testing highlighted three rare missense variants in PKLR, a gene mutated in Mendelian non-spherocytic hemolytic anemia, associated with HGB and HCT (SKAT p < 8 × 10(-7)). These rare, low-frequency, and common RBC variants showed pleiotropy, being also associated with platelet, white blood cell, and lipid traits. Our association results and functional annotation suggest the involvement of new genes in human erythropoiesis. We also confirm that rare and low-frequency variants play a role in the architecture of complex human traits, although their phenotypic effect is generally smaller than originally anticipated.


Assuntos
Eritrócitos/citologia , Eritropoese/genética , Exoma/genética , Pleiotropia Genética , Variação Genética/genética , Genótipo , Negro ou Afro-Americano/genética , Desequilíbrio Alélico , Índices de Eritrócitos , Eritrócitos/metabolismo , Frequência do Gene , Hematócrito , Hemoglobinas/genética , Humanos , Locos de Características Quantitativas/genética
4.
Am J Hum Genet ; 99(1): 22-39, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27346689

RESUMO

White blood cells play diverse roles in innate and adaptive immunity. Genetic association analyses of phenotypic variation in circulating white blood cell (WBC) counts from large samples of otherwise healthy individuals can provide insights into genes and biologic pathways involved in production, differentiation, or clearance of particular WBC lineages (myeloid, lymphoid) and also potentially inform the genetic basis of autoimmune, allergic, and blood diseases. We performed an exome array-based meta-analysis of total WBC and subtype counts (neutrophils, monocytes, lymphocytes, basophils, and eosinophils) in a multi-ancestry discovery and replication sample of âˆ¼157,622 individuals from 25 studies. We identified 16 common variants (8 of which were coding variants) associated with one or more WBC traits, the majority of which are pleiotropically associated with autoimmune diseases. Based on functional annotation, these loci included genes encoding surface markers of myeloid, lymphoid, or hematopoietic stem cell differentiation (CD69, CD33, CD87), transcription factors regulating lineage specification during hematopoiesis (ASXL1, IRF8, IKZF1, JMJD1C, ETS2-PSMG1), and molecules involved in neutrophil clearance/apoptosis (C10orf54, LTA), adhesion (TNXB), or centrosome and microtubule structure/function (KIF9, TUBD1). Together with recent reports of somatic ASXL1 mutations among individuals with idiopathic cytopenias or clonal hematopoiesis of undetermined significance, the identification of a common regulatory 3' UTR variant of ASXL1 suggests that both germline and somatic ASXL1 mutations contribute to lower blood counts in otherwise asymptomatic individuals. These association results shed light on genetic mechanisms that regulate circulating WBC counts and suggest a prominent shared genetic architecture with inflammatory and autoimmune diseases.


Assuntos
Exoma/genética , Loci Gênicos/genética , Pleiotropia Genética , Estudo de Associação Genômica Ampla , Doenças do Sistema Imunitário/genética , Leucócitos/citologia , Contagem de Células Sanguíneas , Humanos , Controle de Qualidade
5.
Am J Nephrol ; 49(3): 193-202, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30808845

RESUMO

BACKGROUND: Serum urea level is a heritable trait, commonly used as a diagnostic marker for kidney function. Genome-wide association studies (GWAS) in East-Asian populations identified a number of genetic loci related to serum urea, however there is a paucity of data for European populations. METHODS: We performed a two-stage meta-analysis of GWASs on serum urea in 13,312 participants, with independent replication in 7,379 participants of European ancestry. RESULTS: We identified 6 genome-wide significant single nucleotide polymorphisms (SNPs) in or near 6 loci, of which 2 were novel (POU2AF1 and ADAMTS9-AS2). Replication of East-Asian and Scottish data provided evidence for an additional 8 loci. SNPs tag regions previously associated with anthropometric traits, serum magnesium, and urinary albumin-to-creatinine ratio, as well as expression quantitative trait loci for genes preferentially expressed in kidney and gastro-intestinal tissues. CONCLUSIONS: Our findings provide insights into the genetic underpinnings of urea metabolism, with potential relevance to kidney function.


Assuntos
Rim/metabolismo , Locos de Características Quantitativas , Ureia/sangue , População Branca/genética , Biologia Computacional , Estudo de Associação Genômica Ampla , Humanos , Redes e Vias Metabólicas/genética , Polimorfismo de Nucleotídeo Único , Valores de Referência , Ureia/metabolismo
7.
PLoS Genet ; 11(4): e1005068, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25898006

RESUMO

The Turkic peoples represent a diverse collection of ethnic groups defined by the Turkic languages. These groups have dispersed across a vast area, including Siberia, Northwest China, Central Asia, East Europe, the Caucasus, Anatolia, the Middle East, and Afghanistan. The origin and early dispersal history of the Turkic peoples is disputed, with candidates for their ancient homeland ranging from the Transcaspian steppe to Manchuria in Northeast Asia. Previous genetic studies have not identified a clear-cut unifying genetic signal for the Turkic peoples, which lends support for language replacement rather than demic diffusion as the model for the Turkic language's expansion. We addressed the genetic origin of 373 individuals from 22 Turkic-speaking populations, representing their current geographic range, by analyzing genome-wide high-density genotype data. In agreement with the elite dominance model of language expansion most of the Turkic peoples studied genetically resemble their geographic neighbors. However, western Turkic peoples sampled across West Eurasia shared an excess of long chromosomal tracts that are identical by descent (IBD) with populations from present-day South Siberia and Mongolia (SSM), an area where historians center a series of early Turkic and non-Turkic steppe polities. While SSM matching IBD tracts (> 1cM) are also observed in non-Turkic populations, Turkic peoples demonstrate a higher percentage of such tracts (p-values ≤ 0.01) compared to their non-Turkic neighbors. Finally, we used the ALDER method and inferred admixture dates (~9th-17th centuries) that overlap with the Turkic migrations of the 5th-16th centuries. Thus, our results indicate historical admixture among Turkic peoples, and the recent shared ancestry with modern populations in SSM supports one of the hypothesized homelands for their nomadic Turkic and related Mongolic ancestors.


Assuntos
Cromossomos/genética , Fluxo Gênico , Genética Populacional , Migração Humana/história , Ásia , Povo Asiático/genética , Povo Asiático/história , China , Cromossomos Humanos Y/genética , Etnicidade/genética , Etnicidade/história , Europa (Continente) , Genótipo , História do Século XV , História do Século XVI , História do Século XVII , História Medieval , Humanos , Idioma , Oriente Médio , Mongólia , Polimorfismo de Nucleotídeo Único/genética , Sibéria
8.
PLoS Genet ; 11(10): e1005378, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26426971

RESUMO

Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age- and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to ~2.8M SNPs with BMI and WHRadjBMI in four strata (men ≤50y, men >50y, women ≤50y, women >50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR<5%) age-specific effects, of which 11 had larger effects in younger (<50y) than in older adults (≥50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may provide further insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.


Assuntos
Índice de Massa Corporal , Tamanho Corporal/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Adulto , Fatores Etários , Idoso , Mapeamento Cromossômico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Caracteres Sexuais , Relação Cintura-Quadril , População Branca
9.
PLoS Genet ; 11(7): e1005230, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26132169

RESUMO

Reference panels from the 1000 Genomes (1000G) Project Consortium provide near complete coverage of common and low-frequency genetic variation with minor allele frequency ≥0.5% across European ancestry populations. Within the European Network for Genetic and Genomic Epidemiology (ENGAGE) Consortium, we have undertaken the first large-scale meta-analysis of genome-wide association studies (GWAS), supplemented by 1000G imputation, for four quantitative glycaemic and obesity-related traits, in up to 87,048 individuals of European ancestry. We identified two loci for body mass index (BMI) at genome-wide significance, and two for fasting glucose (FG), none of which has been previously reported in larger meta-analysis efforts to combine GWAS of European ancestry. Through conditional analysis, we also detected multiple distinct signals of association mapping to established loci for waist-hip ratio adjusted for BMI (RSPO3) and FG (GCK and G6PC2). The index variant for one association signal at the G6PC2 locus is a low-frequency coding allele, H177Y, which has recently been demonstrated to have a functional role in glucose regulation. Fine-mapping analyses revealed that the non-coding variants most likely to drive association signals at established and novel loci were enriched for overlap with enhancer elements, which for FG mapped to promoter and transcription factor binding sites in pancreatic islets, in particular. Our study demonstrates that 1000G imputation and genetic fine-mapping of common and low-frequency variant association signals at GWAS loci, integrated with genomic annotation in relevant tissues, can provide insight into the functional and regulatory mechanisms through which their effects on glycaemic and obesity-related traits are mediated.


Assuntos
Mapeamento Cromossômico , Predisposição Genética para Doença , Índice Glicêmico/genética , Obesidade/genética , Locos de Características Quantitativas/genética , Índice de Massa Corporal , Frequência do Gene/genética , Estudo de Associação Genômica Ampla , Quinases do Centro Germinativo , Glucose-6-Fosfatase/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética , Proteínas Serina-Treonina Quinases/genética , Trombospondinas/genética
10.
J Am Soc Nephrol ; 28(3): 981-994, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27920155

RESUMO

Genome-wide association studies have identified >50 common variants associated with kidney function, but these variants do not fully explain the variation in eGFR. We performed a two-stage meta-analysis of associations between genotypes from the Illumina exome array and eGFR on the basis of serum creatinine (eGFRcrea) among participants of European ancestry from the CKDGen Consortium (nStage1: 111,666; nStage2: 48,343). In single-variant analyses, we identified single nucleotide polymorphisms at seven new loci associated with eGFRcrea (PPM1J, EDEM3, ACP1, SPEG, EYA4, CYP1A1, and ATXN2L; PStage1<3.7×10-7), of which most were common and annotated as nonsynonymous variants. Gene-based analysis identified associations of functional rare variants in three genes with eGFRcrea, including a novel association with the SOS Ras/Rho guanine nucleotide exchange factor 2 gene, SOS2 (P=5.4×10-8 by sequence kernel association test). Experimental follow-up in zebrafish embryos revealed changes in glomerular gene expression and renal tubule morphology in the embryonic kidney of acp1- and sos2-knockdowns. These developmental abnormalities associated with altered blood clearance rate and heightened prevalence of edema. This study expands the number of loci associated with kidney function and identifies novel genes with potential roles in kidney formation.


Assuntos
Exoma/genética , Taxa de Filtração Glomerular/genética , Rim/embriologia , Proteínas Tirosina Fosfatases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Son Of Sevenless/genética , Animais , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Peixe-Zebra
11.
PLoS Genet ; 10(7): e1004508, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25078964

RESUMO

The phenotypic effect of some single nucleotide polymorphisms (SNPs) depends on their parental origin. We present a novel approach to detect parent-of-origin effects (POEs) in genome-wide genotype data of unrelated individuals. The method exploits increased phenotypic variance in the heterozygous genotype group relative to the homozygous groups. We applied the method to >56,000 unrelated individuals to search for POEs influencing body mass index (BMI). Six lead SNPs were carried forward for replication in five family-based studies (of ∼4,000 trios). Two SNPs replicated: the paternal rs2471083-C allele (located near the imprinted KCNK9 gene) and the paternal rs3091869-T allele (located near the SLC2A10 gene) increased BMI equally (beta = 0.11 (SD), P<0.0027) compared to the respective maternal alleles. Real-time PCR experiments of lymphoblastoid cell lines from the CEPH families showed that expression of both genes was dependent on parental origin of the SNPs alleles (P<0.01). Our scheme opens new opportunities to exploit GWAS data of unrelated individuals to identify POEs and demonstrates that they play an important role in adult obesity.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/genética , Obesidade/genética , Polimorfismo de Nucleotídeo Único/genética , Canais de Potássio de Domínios Poros em Tandem/genética , Adulto , Índice de Massa Corporal , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Impressão Genômica , Genótipo , Humanos , Masculino , Obesidade/patologia , População Branca/genética
12.
Hum Mol Genet ; 23(16): 4420-32, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24688116

RESUMO

The genetic contribution to the variation in human lifespan is ∼ 25%. Despite the large number of identified disease-susceptibility loci, it is not known which loci influence population mortality. We performed a genome-wide association meta-analysis of 7729 long-lived individuals of European descent (≥ 85 years) and 16 121 younger controls (<65 years) followed by replication in an additional set of 13 060 long-lived individuals and 61 156 controls. In addition, we performed a subset analysis in cases aged ≥ 90 years. We observed genome-wide significant association with longevity, as reflected by survival to ages beyond 90 years, at a novel locus, rs2149954, on chromosome 5q33.3 (OR = 1.10, P = 1.74 × 10(-8)). We also confirmed association of rs4420638 on chromosome 19q13.32 (OR = 0.72, P = 3.40 × 10(-36)), representing the TOMM40/APOE/APOC1 locus. In a prospective meta-analysis (n = 34 103), the minor allele of rs2149954 (T) on chromosome 5q33.3 associates with increased survival (HR = 0.95, P = 0.003). This allele has previously been reported to associate with low blood pressure in middle age. Interestingly, the minor allele (T) associates with decreased cardiovascular mortality risk, independent of blood pressure. We report on the first GWAS-identified longevity locus on chromosome 5q33.3 influencing survival in the general European population. The minor allele of this locus associates with low blood pressure in middle age, although the contribution of this allele to survival may be less dependent on blood pressure. Hence, the pleiotropic mechanisms by which this intragenic variation contributes to lifespan regulation have to be elucidated.


Assuntos
Loci Gênicos/fisiologia , Longevidade/genética , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Doenças Cardiovasculares/genética , Mapeamento Cromossômico , Cromossomos Humanos Par 19 , Cromossomos Humanos Par 5 , Feminino , Estudo de Associação Genômica Ampla , Humanos , Hipertensão/genética , Masculino , Fenótipo , Estudos Prospectivos , População Branca
13.
Am J Hum Genet ; 93(2): 264-77, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-24144296

RESUMO

Refractive errors are common eye disorders of public health importance worldwide. Ocular axial length (AL) is the major determinant of refraction and thus of myopia and hyperopia. We conducted a meta-analysis of genome-wide association studies for AL, combining 12,531 Europeans and 8,216 Asians. We identified eight genome-wide significant loci for AL (RSPO1, C3orf26, LAMA2, GJD2, ZNRF3, CD55, MIP, and ALPPL2) and confirmed one previously reported AL locus (ZC3H11B). Of the nine loci, five (LAMA2, GJD2, CD55, ALPPL2, and ZC3H11B) were associated with refraction in 18 independent cohorts (n = 23,591). Differential gene expression was observed for these loci in minus-lens-induced myopia mouse experiments and human ocular tissues. Two of the AL genes, RSPO1 and ZNRF3, are involved in Wnt signaling, a pathway playing a major role in the regulation of eyeball size. This study provides evidence of shared genes between AL and refraction, but importantly also suggests that these traits may have unique pathways.


Assuntos
Comprimento Axial do Olho/metabolismo , Proteínas do Olho/genética , Loci Gênicos , Predisposição Genética para Doença , Erros de Refração/genética , Adolescente , Adulto , Idoso , Povo Asiático , Comprimento Axial do Olho/patologia , Proteínas do Olho/metabolismo , Feminino , Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Erros de Refração/etnologia , Erros de Refração/patologia , Transdução de Sinais , População Branca
14.
JAMA ; 313(20): 2044-54, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-26010633

RESUMO

IMPORTANCE: The association of copy number variations (CNVs), differing numbers of copies of genetic sequence at locations in the genome, with phenotypes such as intellectual disability has been almost exclusively evaluated using clinically ascertained cohorts. The contribution of these genetic variants to cognitive phenotypes in the general population remains unclear. OBJECTIVE: To investigate the clinical features conferred by CNVs associated with known syndromes in adult carriers without clinical preselection and to assess the genome-wide consequences of rare CNVs (frequency ≤0.05%; size ≥250 kilobase pairs [kb]) on carriers' educational attainment and intellectual disability prevalence in the general population. DESIGN, SETTING, AND PARTICIPANTS: The population biobank of Estonia contains 52,000 participants enrolled from 2002 through 2010. General practitioners examined participants and filled out a questionnaire of health- and lifestyle-related questions, as well as reported diagnoses. Copy number variant analysis was conducted on a random sample of 7877 individuals and genotype-phenotype associations with education and disease traits were evaluated. Our results were replicated on a high-functioning group of 993 Estonians and 3 geographically distinct populations in the United Kingdom, the United States, and Italy. MAIN OUTCOMES AND MEASURES: Phenotypes of genomic disorders in the general population, prevalence of autosomal CNVs, and association of these variants with educational attainment (from less than primary school through scientific degree) and prevalence of intellectual disability. RESULTS: Of the 7877 in the Estonian cohort, we identified 56 carriers of CNVs associated with known syndromes. Their phenotypes, including cognitive and psychiatric problems, epilepsy, neuropathies, obesity, and congenital malformations are similar to those described for carriers of identical rearrangements ascertained in clinical cohorts. A genome-wide evaluation of rare autosomal CNVs (frequency, ≤0.05%; ≥250 kb) identified 831 carriers (10.5%) of the screened general population. Eleven of 216 (5.1%) carriers of a deletion of at least 250 kb (odds ratio [OR], 3.16; 95% CI, 1.51-5.98; P = 1.5e-03) and 6 of 102 (5.9%) carriers of a duplication of at least 1 Mb (OR, 3.67; 95% CI, 1.29-8.54; P = .008) had an intellectual disability compared with 114 of 6819 (1.7%) in the Estonian cohort. The mean education attainment was 3.81 (P = 1.06e-04) among 248 (≥250 kb) deletion carriers and 3.69 (P = 5.024e-05) among 115 duplication carriers (≥1 Mb). Of the deletion carriers, 33.5% did not graduate from high school (OR, 1.48; 95% CI, 1.12-1.95; P = .005) and 39.1% of duplication carriers did not graduate high school (OR, 1.89; 95% CI, 1.27-2.8; P = 1.6e-03). Evidence for an association between rare CNVs and lower educational attainment was supported by analyses of cohorts of adults from Italy and the United States and adolescents from the United Kingdom. CONCLUSIONS AND RELEVANCE: Known pathogenic CNVs in unselected, but assumed to be healthy, adult populations may be associated with unrecognized clinical sequelae. Additionally, individually rare but collectively common intermediate-size CNVs may be negatively associated with educational attainment. Replication of these findings in additional population groups is warranted given the potential implications of this observation for genomics research, clinical care, and public health.


Assuntos
Variações do Número de Cópias de DNA , Heterozigoto , Deficiência Intelectual/genética , Transtornos Mentais/genética , Adolescente , Adulto , Cognição , Escolaridade , Epilepsia/genética , Estônia , Feminino , Estudo de Associação Genômica Ampla , Humanos , Itália , Masculino , Obesidade/genética , Fenótipo , Reino Unido , Estados Unidos
15.
Am J Epidemiol ; 178(3): 451-60, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23558354

RESUMO

Obesity is of global health concern. There are well-described inverse relationships between female pubertal timing and obesity. Recent genome-wide association studies of age at menarche identified several obesity-related variants. Using data from the ReproGen Consortium, we employed meta-analytical techniques to estimate the associations of 95 a priori and recently identified obesity-related (body mass index (weight (kg)/height (m)(2)), waist circumference, and waist:hip ratio) single-nucleotide polymorphisms (SNPs) with age at menarche in 92,116 women of European descent from 38 studies (1970-2010), in order to estimate associations between genetic variants associated with central or overall adiposity and pubertal timing in girls. Investigators in each study performed a separate analysis of associations between the selected SNPs and age at menarche (ages 9-17 years) using linear regression models and adjusting for birth year, site (as appropriate), and population stratification. Heterogeneity of effect-measure estimates was investigated using meta-regression. Six novel associations of body mass index loci with age at menarche were identified, and 11 adiposity loci previously reported to be associated with age at menarche were confirmed, but none of the central adiposity variants individually showed significant associations. These findings suggest complex genetic relationships between menarche and overall obesity, and to a lesser extent central obesity, in normal processes of growth and development.


Assuntos
Adiposidade/genética , Menarca/genética , Obesidade/epidemiologia , Obesidade/genética , Polimorfismo de Nucleotídeo Único , População Branca/genética , Adolescente , Fatores Etários , Índice de Massa Corporal , Criança , Feminino , Estudos de Associação Genética , Humanos , Desequilíbrio de Ligação , Circunferência da Cintura , Relação Cintura-Quadril , Saúde da Mulher/estatística & dados numéricos
16.
Hum Biol ; 85(6): 859-900, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25079123

RESUMO

The origin and history of the Ashkenazi Jewish population have long been of great interest, and advances in high-throughput genetic analysis have recently provided a new approach for investigating these topics. We and others have argued on the basis of genome-wide data that the Ashkenazi Jewish population derives its ancestry from a combination of sources tracing to both Europe and the Middle East. It has been claimed, however, through a reanalysis of some of our data, that a large part of the ancestry of the Ashkenazi population originates with the Khazars, a Turkic-speaking group that lived to the north of the Caucasus region ~1,000 years ago. Because the Khazar population has left no obvious modern descendants that could enable a clear test for a contribution to Ashkenazi Jewish ancestry, the Khazar hypothesis has been difficult to examine using genetics. Furthermore, because only limited genetic data have been available from the Caucasus region, and because these data have been concentrated in populations that are genetically close to populations from the Middle East, the attribution of any signal of Ashkenazi-Caucasus genetic similarity to Khazar ancestry rather than shared ancestral Middle Eastern ancestry has been problematic. Here, through integration of genotypes from newly collected samples with data from several of our past studies, we have assembled the largest data set available to date for assessment of Ashkenazi Jewish genetic origins. This data set contains genome-wide single-nucleotide polymorphisms in 1,774 samples from 106 Jewish and non-Jewish populations that span the possible regions of potential Ashkenazi ancestry: Europe, the Middle East, and the region historically associated with the Khazar Khaganate. The data set includes 261 samples from 15 populations from the Caucasus region and the region directly to its north, samples that have not previously been included alongside Ashkenazi Jewish samples in genomic studies. Employing a variety of standard techniques for the analysis of population-genetic structure, we found that Ashkenazi Jews share the greatest genetic ancestry with other Jewish populations and, among non-Jewish populations, with groups from Europe and the Middle East. No particular similarity of Ashkenazi Jews to populations from the Caucasus is evident, particularly populations that most closely represent the Khazar region. Thus, analysis of Ashkenazi Jews together with a large sample from the region of the Khazar Khaganate corroborates the earlier results that Ashkenazi Jews derive their ancestry primarily from populations of the Middle East and Europe, that they possess considerable shared ancestry with other Jewish populations, and that there is no indication of a significant genetic contribution either from within or from north of the Caucasus region.


Assuntos
Judeus/genética , Terras Antigas/etnologia , Europa (Continente)/etnologia , Feminino , Genética Populacional/métodos , Estudo de Associação Genômica Ampla , História Antiga , História Medieval , Humanos , Judeus/história , Masculino , Oriente Médio/etnologia , Polimorfismo de Nucleotídeo Único/genética
17.
Nat Commun ; 12(1): 24, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33402679

RESUMO

Differences between sexes contribute to variation in the levels of fasting glucose and insulin. Epidemiological studies established a higher prevalence of impaired fasting glucose in men and impaired glucose tolerance in women, however, the genetic component underlying this phenomenon is not established. We assess sex-dimorphic (73,089/50,404 women and 67,506/47,806 men) and sex-combined (151,188/105,056 individuals) fasting glucose/fasting insulin genetic effects via genome-wide association study meta-analyses in individuals of European descent without diabetes. Here we report sex dimorphism in allelic effects on fasting insulin at IRS1 and ZNF12 loci, the latter showing higher RNA expression in whole blood in women compared to men. We also observe sex-homogeneous effects on fasting glucose at seven novel loci. Fasting insulin in women shows stronger genetic correlations than in men with waist-to-hip ratio and anorexia nervosa. Furthermore, waist-to-hip ratio is causally related to insulin resistance in women, but not in men. These results position dissection of metabolic and glycemic health sex dimorphism as a steppingstone for understanding differences in genetic effects between women and men in related phenotypes.


Assuntos
Anorexia Nervosa/genética , Glicemia/metabolismo , Intolerância à Glucose/genética , Proteínas Substratos do Receptor de Insulina/genética , Resistência à Insulina/genética , Insulina/sangue , Fatores de Transcrição Kruppel-Like/genética , Adulto , Anorexia Nervosa/sangue , Anorexia Nervosa/etnologia , Anorexia Nervosa/fisiopatologia , Jejum/sangue , Feminino , Expressão Gênica , Loci Gênicos , Estudo de Associação Genômica Ampla , Intolerância à Glucose/sangue , Intolerância à Glucose/etnologia , Intolerância à Glucose/fisiopatologia , Humanos , Proteínas Substratos do Receptor de Insulina/sangue , Fatores de Transcrição Kruppel-Like/sangue , Masculino , Pessoa de Meia-Idade , Fenótipo , Caracteres Sexuais , Fatores Sexuais , Relação Cintura-Quadril , População Branca
18.
Nucleic Acids Res ; 36(12): e75, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18539607

RESUMO

Detection of DNA sequence variation is critical to biomedical applications, including disease genetic identification, diagnosis and treatment, drug discovery and forensic analysis. Here, we describe an arrayed primer extension-based genotyping method (APEX-2) that allows multiplex (640-plex) DNA amplification and detection of single nucleotide polymorphisms (SNPs) and mutations on microarrays via four-color single-base primer extension. The founding principle of APEX-2 multiplex PCR requires two oligonucleotides per SNP/mutation to generate amplicons containing the position of interest. The same oligonucleotides are then subsequently used as immobilized single-base extension primers on a microarray. The method described here is ideal for SNP or mutation detection analysis, molecular diagnostics and forensic analysis. This robust genetic test has minimal requirements: two primers, two spots on the microarray and a low cost four-color detection system for the targeted site; and provides an advantageous alternative to high-density platforms and low-density detection systems.


Assuntos
Análise de Sequência com Séries de Oligonucleotídeos/métodos , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Nucleotídeo Único , Primers do DNA , Genótipo , Humanos , Mutação
19.
Hum Hered ; 68(1): 35-44, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19339784

RESUMO

OBJECTIVE: Individual population history is the main reason for the variability of linkage disequilibrium (LD) patterns and haplotype frequencies among populations. Such diversity may influence the transferability of tag SNPs from one population to another. Our goal was to compare patterns of pairwise LD and allele and haplotype frequencies in Estonian and Russian populations, to estimate the genetic variation between populations and assess the potential transferability of tag SNPs. METHODS: 452 SNPs from 25 unlinked genomic regions on 12 chromosomes were genotyped in 140 Estonians and 207 Russians from Northern and Western regions of the European area of Russia. RESULTS: The allele frequency distributions were highly consistent between populations (R > 0.90 for all pairwise comparisons). The overall frequency variation among populations was low (F(ST) = 0.0054). The number of SNPs with high-range F(ST) values (0.02-0.09) was most prominent for the MC5R genomic region. Haplotype heterogeneity among populations was low (F(ST) values ranged within 0.00-0.01, with the exception of haploblocks in the ADIPOR2 and MC5R regions). The interpopulation proximity was also evaluated using haplotype diversity. CONCLUSION: Our data showed a high concordance between the populations studied, which may be considered as the result of their historical formation on a cognate genetic basis.


Assuntos
Frequência do Gene , Polimorfismo de Nucleotídeo Único , Europa Oriental , Variação Genética , Genética Populacional , Haplótipos , Humanos , Desequilíbrio de Ligação
20.
Circ Genom Precis Med ; 13(6): e002769, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33321069

RESUMO

BACKGROUND: Coronary artery disease (CAD) is accelerated in subjects with type 2 diabetes mellitus (T2D). METHODS: To test whether this reflects differential genetic influences on CAD risk in subjects with T2D, we performed a systematic assessment of genetic overlap between CAD and T2D in 66 643 subjects (27 708 with CAD and 24 259 with T2D). Variants showing apparent association with CAD in stratified analyses or evidence of interaction were evaluated in a further 117 787 subjects (16 694 with CAD and 11 537 with T2D). RESULTS: None of the previously characterized CAD loci was found to have specific effects on CAD in T2D individuals, and a genome-wide interaction analysis found no new variants for CAD that could be considered T2D specific. When we considered the overall genetic correlations between CAD and its risk factors, we found no substantial differences in these relationships by T2D background. CONCLUSIONS: This study found no evidence that the genetic architecture of CAD differs in those with T2D compared with those without T2D.


Assuntos
Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Estudos de Casos e Controles , Estudo de Associação Genômica Ampla , Humanos , Metanálise como Assunto , Polimorfismo Genético , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA