Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Beilstein J Org Chem ; 20: 1270-1277, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887582

RESUMO

Evaporable indano[60]fullerene ketone (FIDO) was converted to indano[60]fullerene thioketone (FIDS) in high yield by using Lawesson's reagent. Three compounds with different substituents in para position were successfully converted to the corresponding thioketones, showing that the reaction tolerates compounds with electron-donating and electron-withdrawing substituents. Computational studies with density functional theory revealed the unique vibrations of the thioketone group in FIDS. The molecular structure of FIDS was confirmed by single-crystal X-ray analysis. Bulk heterojunction organic solar cells using three evaporable fullerene derivatives (FIDO, FIDS, C60) as electron-acceptors were compared, and the open-circuit voltage with FIDS was 0.16 V higher than that with C60.

2.
Chemistry ; 24(72): 19228-19235, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30251291

RESUMO

One driving force for advancing the field of semiconducting polymers is to create new π-conjugated systems as building units. This work reports on a series of electron-deficient hybrid naphthalene-based π-conjugated systems in which two different units among benzoxadiazole, benzothiadiazole, benzoselenadiazole, and benzopyrazine (quinoxaline) were fused. These π-conjugated systems were synthesized in excellent yields via the selective one-side ring-opening reaction of corresponding naphthobischalcogenadiazoles using the NaBH4 /CoCl2 reduction reagents, followed by the ring-closing reactions. The electronic structure of these π-conjugated systems was studied in comparison with their parent systems. Furthermore, thiadiazolonaphthoxadiazole was incorporated into the π-conjugated polymer backbone. The electronic structure, film structure, and photovoltaic properties of the polymer were studied as well.

3.
Chemistry ; 22(38): 13627-31, 2016 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-27554067

RESUMO

Cyclobuteno[3,4:1,2][60]fullerenes have been prepared in a straightforward manner by a simple reaction between [60]fullerene and readily available allenoates or alkynoates as organic reagents under basic and mild conditions. The chemical structure of the new modified fullerenes has been determined by standard spectroscopic techniques and confirmed by X-ray diffraction analysis. Some of these new fullerene derivatives exhibit a remarkable intrinsic electron mobility (determined by using flash-photolysis time-resolved microwave conductivity (FP-TRMC) measurements), which surpasses that of the well-known phenyl-C61-butyric acid methyl ester, thus behaving as promising n-type organic semiconductors.

4.
J Am Chem Soc ; 137(2): 893-7, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25530351

RESUMO

Controlling self-organization and morphology of chemical architectures is an essential challenge in the search for higher energy-conversion efficiencies in a variety of optoelectronic devices. Here, we report a highly ordered donor/acceptor functional material, which has been obtained using the principle of ionic self-assembly. Initially, an electron donor π-extended tetrathiafulvalene and an electron-acceptor perylene-bisimide were self-organized separately obtaining n- and p-nanofibers at the same scale. These complementary n- and p-nanofibers are endowed with ionic groups with opposite charges on their surfaces. The synergic interactions establish periodic alignments between both nanofibers resulting in a material with alternately segregated donor/acceptor nanodomains. Photoconductivity measurements show values for these n/p-co-assembled materials up to 0.8 cm(2) V(-1) s(-1), confirming the effectiveness in the design of these heterojunction structures. This easy methodology offers great possibilities to achieve highly ordered n/p-materials for potential applications in different areas such as optoelectonics and photovoltaics.


Assuntos
Nanofibras/química , Nanotecnologia/métodos , Transporte de Elétrons , Compostos Heterocíclicos/química , Imidas/química , Modelos Moleculares , Conformação Molecular , Perileno/análogos & derivados , Perileno/química , Água/química
5.
ACS Appl Mater Interfaces ; 16(3): 3735-3743, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38192099

RESUMO

Thiazole, as a family of five-membered heteroaromatic rings, is an interesting building unit that can play a role in coplanarizing the backbone as well as deepening the HOMO energy level, which is beneficial for the design of π-conjugated polymers for the photoactive materials in organic photovoltaics (OPVs). Here, we designed and synthesized π-conjugated polymers with simple chemical structures, which consist of 2,2'-bithiazole or 5,5'-bithiazole and alkylthiophenes as the polymer backbone. In fact, the polymers can be easily synthesized in much fewer steps compared to the typical high-performance polymers based on fused heteroaromatic rings. Interestingly, PTN5 exhibited a markedly higher ordered structure than PTN2. This was likely ascribed to the more coplanar and rigid backbone of PTN5 than that of PTN2 originating in the effectively arranged S···N interaction. As a result, the nonfullerene photovoltaic cell based on PTN5 showed a PCE of 12.2%, which was much higher than the cell based on PTN2 (4.3%) and was high for the polymers consisting of only nonfused rings. These results demonstrate that thiazole-based polymers are promising photoactive materials for OPVs and emphasize the importance of careful molecular design utilizing noncovalent interactions.

6.
Chem Sci ; 15(17): 6349-6362, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38699251

RESUMO

Careful control of electronic properties, structural order, and solubility of π-conjugated polymers is central to the improvement of organic photovoltaic (OPV) performance. In this work, we designed and synthesized a series of naphthobisthiadiazole-quaterthiophene copolymers by systematically replacing the alkyl groups with ester groups and changing the position of the fluorine groups in the quaterthiophene moiety. These alterations lowered the HOMO and LUMO energy levels and systematically varied the combination of intramolecular noncovalent interactions such as O⋯S and F⋯S interactions in the backbone. More importantly, although the introduction of such noncovalent interactions often lowers the solubility owing to the interlocking of backbone linkages, we found that careful design of the noncovalent interactions afforded polymers with relatively high solubility and high crystallinity at the same time. As a result, the power conversion efficiency of OPV cells that used fullerene (PC61BM) and nonfullerene (Y12) as the acceptor was improved. Our work offers important information for the development of high-performance π-conjugated polymers for OPVs.

7.
Adv Sci (Weinh) ; 10(5): e2205682, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36529702

RESUMO

In π $\upi$ -conjugated polymers, a highly ordered backbone structure and solubility are always in a trade-off relationship that must be overcome to realize highly efficient and solution-processable organic photovoltaics (OPVs). Here, it is shown that a π $\upi$ -conjugated polymer based on a novel thiazole-fused ring, thieno[2',3':5,6]benzo[1,2-d:4,3-d']bisthiazole (TBTz) achieves both high backbone order and high solubility due to the structural feature of TBTz such as the noncovalent interlocking of the thiazole moiety, the rigid and bent-shaped structure, and the fused alkylthiophene ring. Furthermore, based on the electron-deficient nature of these thiazole-fused rings, the polymer exhibits deep HOMO energy levels, which lead to high open-circuit voltages (VOC s) in OPV cells, even without halogen substituents that are commonly introduced into high-performance polymers. As a result, when the polymer is combined with a typical nonfullerene acceptor Y6, power conversion efficiencies of reaching 16% and VOC s of more than 0.84 V are observed, both of which are among the top values reported so far for "halogen-free" polymers. This study will serve as an important reference for designing π $\upi$ -conjugated polymers to achieve highly efficient and solution-processable OPVs.

8.
Org Biomol Chem ; 10(9): 1730-4, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22237916

RESUMO

The first CH/π solute-solvent interaction of C(60) was evidenced by the kinetic solvent effects in the Diels-Alder reaction with 1,3-cyclohexadiene based on the evaluation of linear free energy relationship of log k(2) with empirical solvent polarity and basicity parameters, E(T)(30) and D(π), respectively.


Assuntos
Cicloexenos/química , Fulerenos/química , Cinética , Estrutura Molecular , Solventes/química
9.
ACS Appl Mater Interfaces ; 14(12): 14400-14409, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35315275

RESUMO

Naphthobisthiadiazole has been known as a promising building unit of π-conjugated polymers for organic photovoltaics (OPVs). Here, we synthesized new NTz-based polymers that were combined with a benzodithiophene (BDT) unit having alkylthienyl substituents in the polymer backbone, named PNTzBDT, and PNTzBDT-F and PNTzBDT-Cl with fluorine and chlorine groups in the substituents, respectively. The polymers had significantly improved solubility than the previously reported NTz-based polymer (PNTz4T), most likely due to the torsion of the alkylthienyl substituents with respect to the BDT moiety, which suppresses the intermolecular interaction between the backbones. Despite the lower intermolecular interaction and thereby lower crystallinity, these polymers, in particular PNTzBDT and PNTzBDT-F, exhibited higher photovoltaic performances, with power conversion efficiencies as high as 13.3%, than PNTz4T in the cells that used Y6 as the acceptor material. The improved performance was ascribed to the enhanced miscibility of the polymers with the nonfullerene acceptor due to the increased solubility, which in addition led to the better charge generation and reduced charge recombination. These results indicate that NTz-based π-conjugated polymers have high potential for nonfullerene-based OPVs.

10.
ACS Appl Mater Interfaces ; 13(47): 56420-56429, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34783522

RESUMO

Achieving both the backbone order and solubility of π-conjugated polymers, which are often in a trade-off relationship, is imperative for maximizing the performance of organic solar cells. Here, we studied three different π-conjugated polymers based on thiazolothiazole (PSTz1 and POTz1) and benzobisthiazole (PNBTz1) that were combined with a benzodithiophene unit in the backbone, where PNBTz1 was newly synthesized. Because of the steric hindrance between the side chains located on neighboring heteroaromatic rings, POTz1 had a much less coplanar backbone than PSTz1 in which such a steric hindrance is absent. However, POTz1 showed higher photovoltaic performance in solar cells that used Y6 as the acceptor material. This was likely due to the significantly higher solubility of POTz1 than PSTz1, resulting in a better morphology. Interestingly, PNBTz1 was found to have markedly higher backbone coplanarity than POTz1, despite having similar steric hindrance between the side chains, most likely owing to the more extended π-electron system, whereas PNBTz1 had good solubility comparable to POTz1. As a result, PNBTz1 exhibited higher photovoltaic performance than POTz1 in the Y6-based cells: specifically, the fill factor was significantly enhanced. Our results indicate that the backbone order and solubility can be achieved by the careful molecular design, which indeed leads to higher photovoltaic performance.

11.
ACS Appl Mater Interfaces ; 11(26): 23410-23416, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31252499

RESUMO

N-type (electron-transporting) semiconducting polymers are essential materials for the development of truly plastic electronic devices. Here, we synthesized for the first time dithiazolylthienothiophene bisimide (TzBI), as a new family for imide-based electron-deficient π-conjugated systems, and semiconducting polymers by incorporating TzBI into the π-conjugated backbone as the building unit. The TzBI-based polymers are found to have deep frontier molecular orbital energy levels and wide optical bandgaps compared to the dithienylthienothiophene bisimide (TBI) counterpart. It is also found that TzBI can promote the π-π intermolecular interactions of the polymer backbones relative to TBI most probably because the thiazole ring, which replaced the thiophene ring, at the end of the framework gives a more coplanar backbone. In fact, TzBI-based polymers function as the n-type semiconducting material in both organic field-effect transistor (OFET) and organic photovoltaic (OPV) devices. Notably, one of the TzBI-based polymers provides a power conversion efficiency of 3.3% in the all-polymer OPV device, which could be high for a low-molecular-weight polymer (<10 kDa). Interestingly, while many of the n-type semiconducting polymers utilized in OPVs have narrow bandgaps, the TzBI-based polymers have wide bandgaps. This is highly beneficial for complementing the visible to near-IR light absorption range when blended with p-type narrow bandgap polymers that have been widely developed in the last decade. The results demonstrate great promise and possibility of TzBI as the building unit for n-type semiconducting polymers.

12.
ACS Appl Mater Interfaces ; 7(23): 12894-902, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26010767

RESUMO

Fullerene bis-adducts are increasingly being studied to gain a high open circuit voltage (Voc) in bulk heterojunction organic photovoltaics (OPVs). We designed and synthesized homo and hetero bis-adduct [60]fullerenes by combining fused cyclohexanone or a five-membered spiro-acetalized unit (SAF5) with 1,2-dihydromethano (CH2), indene, or [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These new eight 56π fullerenes showed a rational rise of the lowest unoccupied molecular orbital (LUMO). We perform a systematic study on the electrochemical property, solubility, morphology, and space-charge-limited current (SCLC) mobility. The best power conversion efficiency (PCE) of 4.43% (average, 4.36%) with the Voc of 0.80 V was obtained for poly(3-hexylthiophene) (P3HT) blended with SAF5/indene hetero bis-adduct, which is a marked advancement in PCE compared to the 0.9% of SAF5 monoadduct. More importantly, we elucidate an important role of mobility balance between hole and electron that correlates with the device PCEs. Besides, an empirical equation to extrapolate the solubilities of hetero bis-adducts is proposed on the basis of those of counter monoadducts. Our work offers a guide to mitigate barriers for exploring a large number of hetero bis-adduct fullerenes for efficient OPVs.

13.
ACS Appl Mater Interfaces ; 7(16): 8915-22, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25856417

RESUMO

Exploiting bis-addition products of fullerenes is a rational way to improve the efficiency of bulk heterojunction-type organic photovoltaic cells (OPV); however, this design inherently produces regio- and stereoisomers that may impair the ultimate performance and fabrication reproducibility. Here, we report unprecedented exo and endo stereoisomers of the spiro-acetalized [60]fullerene monoadduct with methyl- or phenyl-substituted 1,3-dioxane (SAF6). Although there is no chiral carbon in either the reagent or the fullerene, equatorial (eq) rather than axial (ax) isomers are selectively produced at an exo-eq:endo-eq ratio of approximately 1:1 and can be easily separated using silica gel column chromatography. Nuclear Overhauser effect measurements identified the conformations of the straight exo isomer and bent endo isomer. We discuss the origin of stereoselectivity, the anomeric effect, intermolecular ordering in the film state, and the performance of poly(3-hexylthiophene):substituted SAF6 OPV devices. Despite their identical optical and electrochemical properties, their solubilities and space-charge limited current mobilities are largely influenced by the stereoisomers, which leads to variation in the OPV efficiency. This study emphasizes the importance of fullerene stereochemistry for understanding the relationship between stereochemical structures and device output.

14.
Chem Asian J ; 9(11): 3084-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25204634

RESUMO

Azafulleroid, amino-bridged [5,6]-open fullerene, has the ambident N/C basicity of the incorporated enamine moiety. Acid-catalyzed arylation of N-substituted azafulleroids proceeded via two types of initial N/C protonation to perform monoarylation or 1,4-bisarylation for the N-alkyl substituents and shuttlecock-type pentakisarylation for the N-phenyl substituent. The dramatic product change was explained by considering the possible mechanism as well as the DFT computational results.

15.
Org Lett ; 14(23): 6040-3, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23185974

RESUMO

Variously substituted [6,6]closed aziridinofullerenes were exclusively obtained from acid-catalyzed denitrogenation of triazolinofullerenes without formation of relevant [5,6]open azafulleroids, which are the major products on noncatalyzed denitrogenation. The mechanistic consideration by DFT calculations suggested a reaction sequence involving initial pre-equilibrium protonation of the triazoline N(1) atom, generation of aminofullerenyl cation by nitrogen-extrusion, and final aziridination.

16.
Org Lett ; 13(16): 4244-7, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21776972

RESUMO

The thermal reaction of C(60) with five- and six-membered morpholinocycloalkenes in refluxing toluene exclusively gave the [2+2] cycloadducts in high yields. However, a seven-membered homologue sluggishly reacted with C(60) because of the increasing steric hindrance. This cycloaddition reaction is likely to proceed via a single electron transfer (SET), a radical-coupling, and subsequent ion cyclization rather than the prior proton transfer between the radical ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA