Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2961, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580634

RESUMO

The evolution of the northern hemispheric climate during the last glacial period was beset by quasi-episodic iceberg discharge events from the Laurentide ice sheet, known as Heinrich events (HEs). The paleo record places most HEs into the cold stadial of the Dansgaard-Oeschger cycle. However, not every Dansgaard-Oeschger cycle is associated with a HE, revealing a complex interplay between the two modes of glacial variability. Here, using a coupled ice sheet-solid earth model, we introduce a mechanism that explains the synchronicity of HEs and Dansgaard-Oeschger cycles. Unlike earlier studies, our mechanism does not require a trigger during the stadial. Instead, the atmospheric warming signal during the interstadial of the Dansgaard-Oeschger cycle causes enhanced ice stream thickening that leads to the HE during the late interstadial. We demonstrate that this mechanism reproduces the key HE characteristics and provides an explanation for synchronous HEs from different regions of the Laurentide ice sheet.

2.
IEEE Trans Vis Comput Graph ; 15(6): 1375-82, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19834211

RESUMO

Due to its nonlinear nature, the climate system shows quite high natural variability on different time scales, including multiyear oscillations such as the El Niño Southern Oscillation phenomenon. Beside a shift of the mean states and of extreme values of climate variables, climate change may also change the frequency or the spatial patterns of these natural climate variations. Wavelet analysis is a well established tool to investigate variability in the frequency domain. However, due to the size and complexity of the analysis results, only few time series are commonly analyzed concurrently. In this paper we will explore different techniques to visually assist the user in the analysis of variability and variability changes to allow for a holistic analysis of a global climate model data set consisting of several variables and extending over 250 years. Our new framework and data from the IPCC AR4 simulations with the coupled climate model ECHAM5/MPI-OM are used to explore the temporal evolution of El Niño due to climate change.

3.
J Adv Model Earth Syst ; 11(4): 998-1038, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32742553

RESUMO

A new release of the Max Planck Institute for Meteorology Earth System Model version 1.2 (MPI-ESM1.2) is presented. The development focused on correcting errors in and improving the physical processes representation, as well as improving the computational performance, versatility, and overall user friendliness. In addition to new radiation and aerosol parameterizations of the atmosphere, several relatively large, but partly compensating, coding errors in the model's cloud, convection, and turbulence parameterizations were corrected. The representation of land processes was refined by introducing a multilayer soil hydrology scheme, extending the land biogeochemistry to include the nitrogen cycle, replacing the soil and litter decomposition model and improving the representation of wildfires. The ocean biogeochemistry now represents cyanobacteria prognostically in order to capture the response of nitrogen fixation to changing climate conditions and further includes improved detritus settling and numerous other refinements. As something new, in addition to limiting drift and minimizing certain biases, the instrumental record warming was explicitly taken into account during the tuning process. To this end, a very high climate sensitivity of around 7 K caused by low-level clouds in the tropics as found in an intermediate model version was addressed, as it was not deemed possible to match observed warming otherwise. As a result, the model has a climate sensitivity to a doubling of CO2 over preindustrial conditions of 2.77 K, maintaining the previously identified highly nonlinear global mean response to increasing CO2 forcing, which nonetheless can be represented by a simple two-layer model.

4.
Nat Commun ; 6: 7099, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26028337

RESUMO

Recurrent deposition of organic-rich sediment layers (sapropels) in the eastern Mediterranean Sea is caused by complex interactions between climatic and biogeochemical processes. Disentangling these influences is therefore important for Mediterranean palaeo-studies in particular, and for understanding ocean feedback processes in general. Crucially, sapropels are diagnostic of anoxic deep-water phases, which have been attributed to deep-water stagnation, enhanced biological production or both. Here we use an ocean-biogeochemical model to test the effects of commonly proposed climatic and biogeochemical causes for sapropel S1. Our results indicate that deep-water anoxia requires a long prelude of deep-water stagnation, with no particularly strong eutrophication. The model-derived time frame agrees with foraminiferal δ(13)C records that imply cessation of deep-water renewal from at least Heinrich event 1 to the early Holocene. The simulated low particulate organic carbon burial flux agrees with pre-sapropel reconstructions. Our results offer a mechanistic explanation of glacial-interglacial influence on sapropel formation.


Assuntos
Ciclo do Carbono , Sedimentos Geológicos , Camada de Gelo , Oxigênio , Água do Mar/química , Benzopiranos , Foraminíferos , Substâncias Húmicas , Mar Mediterrâneo , Modelos Teóricos , Datação Radiométrica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA