Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 200(10): 3429-3437, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29618523

RESUMO

Intricate processes in the thymus and periphery help curb the development and activation of autoreactive T cells. The subtle signals that govern these processes are an area of great interest, but tuning TCR sensitivity for the purpose of affecting T cell behavior remains technically challenging. Previously, our laboratory described the derivation of two TCR-transgenic CD4 T cell mouse lines, LLO56 and LLO118, which recognize the same cognate Listeria epitope with the same affinity. Despite the similarity of the two TCRs, LLO56 cells respond poorly in a primary infection whereas LLO118 cells respond robustly. Phenotypic examination of both lines revealed a substantial difference in their surface of expression of CD5, which serves as a dependable readout of the self-reactivity of a cell. We hypothesized that the increased interaction with self by the CD5-high LLO56 was mediated through TCR signaling, and was involved in the characteristic weak primary response of LLO56 to infection. To explore this issue, we generated an inducible knock-in mouse expressing the self-sensitizing voltage-gated sodium channel Scn5a. Overexpression of Scn5a in peripheral T cells via the CD4-Cre promoter resulted in increased TCR-proximal signaling. Further, Scn5a-expressing LLO118 cells, after transfer into BL6 recipient mice, displayed an impaired response during infection relative to wild-type LLO118 cells. In this way, we were able to demonstrate that tuning of TCR sensitivity to self can be used to alter in vivo immune responses. Overall, these studies highlight the critical relationship between TCR-self-pMHC interaction and an immune response to infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Animais , Antígenos CD5/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Canal de Sódio Disparado por Voltagem NAV1.5/imunologia , Receptores de Antígenos de Linfócitos T/imunologia
2.
Immunohorizons ; 4(8): 485-497, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32769180

RESUMO

The contribution of self-peptide-MHC signaling in CD4+ T cells to metabolic programming has not been definitively established. In this study, we employed LLO118 and LLO56, two TCRtg CD4+ T cells that recognize the same Listeria epitope. We previously have shown that LLO56 T cells are highly self-reactive and respond poorly in a primary infection, whereas LLO118 cells, which are less self-reactive, respond well during primary infection. We performed metabolic profiling and found that naive LLO118 had a dramatically higher basal respiration rate, a higher maximal respiration rate, and a higher glycolytic rate relative to LLO56. The LLO118 cells also exhibited a greater uptake of 2-NBD-glucose, in vitro and in vivo. We extended the correlation of low self-reactivity (CD5lo) with high basal metabolism using two other CD4+ TCRtg cells with known differences in self-reactivity, AND and Marilyn. We hypothesized that the decreased metabolism resulting from a strong interaction with self was mediated through TCR signaling. We then used an inducible knock-in mouse expressing the Scn5a voltage-gated sodium channel. This channel, when expressed in peripheral T cells, enhanced basal TCR-mediated signaling, resulting in decreased respiration and glycolysis, supporting our hypothesis. Genes and metabolites analysis of LLO118 and LLO56 T cells revealed significant differences in their metabolic pathways, including the glycerol phosphate shuttle. Inhibition of this pathway reverts the metabolic state of the LLO118 cells to be more LLO56 like. Overall, these studies highlight the critical relationship between peripheral TCR-self-pMHC interaction, metabolism, and the immune response to infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Metabolismo Basal , Diferenciação Celular/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA