Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(46): 21030-21034, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36346462

RESUMO

We use a ligand design strategy to isolate a cyclometalated nickel(IV) complex that is directly analogous to a key intermediate proposed in aminoquinoline-directed C-H functionalization catalysis. This nickel(IV) complex is formed by oxidative addition of a diaryliodonium reagent to an anionic nickel(II)-picolinate precursor. The nickel(IV) σ-aryl complex is stable at room temperature but undergoes C(sp2)-C(sp3) bond-forming reductive elimination under mild conditions (70 °C, 120 min). Overall, this study demonstrates the accessibility of long-sought-after nickel(IV) intermediates in C-H functionalization catalysis. Furthermore, it demonstrates that LX-type (bidentate, mono-anionic) ligands such as picolinate dramatically stabilize these nickel(IV) species.


Assuntos
Aminoquinolinas , Níquel , Catálise , Oxirredução , Ânions
2.
J Am Chem Soc ; 142(13): 5918-5923, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32207616

RESUMO

The reaction of carboxylic acid derivatives with amines to form amide bonds has been the most widely used transformation in organic synthesis over the past century. Its utility is driven by the broad availability of the starting materials as well as the kinetic and thermodynamic driving force for amide bond formation. As such, the invention of new reactions between carboxylic acid derivatives and amines that strategically deviate from amide bond formation remains both a challenge and an opportunity for synthetic chemists. This report describes the development of a nickel-catalyzed decarbonylative reaction that couples (hetero)aromatic esters with a broad scope of amines to form (hetero)aryl amine products. The successful realization of this transformation was predicated on strategic design of the cross-coupling partners (phenol esters and silyl amines) to preclude conventional reactivity that forms inert amide byproducts.


Assuntos
Ácidos Carboxílicos/química , Ésteres/química , Níquel/química , Aminação , Aminas/química , Catálise , Modelos Moleculares
3.
Inorg Chem ; 59(12): 8034-8043, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32452669

RESUMO

Cytochrome (Cyt) P450s are an important class of enzymes with numerous functions in nature. The unique reactivity of these enzymes relates to their heme b active sites with an axially bound, deprotonated cysteine (a "cysteinate") ligand (chemically speaking a thiolate). The heme-thiolate active sites further contain a number of conserved hydrogen-bonds (H-bonds) to the bound cysteinate ligand, which have been proposed to tune and stabilize the Fe-S bond. In this work, we present the low-temperature preparation of five ferric heme-thiolate nitric oxide (NO) model complexes that contain one tunable hydrogen-bond to the bound thiolate ligand. We show that the presence of a H-bond has a dramatic effect in stabilizing the thiolate ligand against direct reaction with NO. This observation reinforces the important protective role of H-bonds in Cyt P450s. We further demonstrate that H-bond strength tunes thiolate donor strength, which, in turn, controls the N-O and Fe-NO stretching frequencies and hence, bond strengths. We observe a direct correlation between the Fe-NO and N-O stretching frequencies, indicative of a thiolate σ-trans effect (interaction). Here, very small changes in H-bond strength lead to a surprisingly large effect on the FeNO unit. This result implies that subtle changes in the Cys-pocket of a Cyt P450 can strongly affect reactivity. Importantly, using the Fe-NO/N-O correlation established here, the thiolate donor strength in heme-thiolate enzyme active sites and model complexes can be quantified in a straightforward way, using NO as a probe. This spectroscopic correlation provides a quantitative measure of the thiolate's "push" effect, which is important in O2-activation (Compound I formation) in Cyt P450s in general.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Compostos Férricos/química , Modelos Químicos , Compostos de Sulfidrila/química , Sistema Enzimático do Citocromo P-450/metabolismo , Teoria da Densidade Funcional , Compostos Férricos/metabolismo , Ligação de Hidrogênio , Compostos de Sulfidrila/metabolismo
4.
Inorg Chem ; 58(23): 16011-16027, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31786931

RESUMO

Despite utilizing a common cofactor binding motif, hemoproteins bearing a cysteine-derived thiolate ligand (heme-thiolate proteins) are involved in a diverse array of biological processes ranging from drug metabolism to transcriptional regulation. Though the origin of heme-thiolate functional divergence is not well understood, growing evidence suggests that the hydrogen bonding (H-bonding) environment surrounding the Fe-coordinating thiolate influences protein function. Outside of X-ray crystallography, few methods exist to characterize these critical H-bonding interactions. Electron paramagnetic resonance (EPR) spectra of heme-thiolate proteins bearing a six-coordinate, Fe(III) heme exhibit uniquely narrow low-spin (S = 1/2), rhombic signals, which are sensitive to changes in the heme-thiolate H-bonding environment. To establish a well-defined relationship between the magnitude of g-value dispersion in this unique EPR signal and the strength of the heme-thiolate H-bonding environment, we synthesized and characterized of a series of six-coordinate, aryl-thiolate-ligated Fe(III) porphyrin complexes bearing a tunable intramolecular H-bond. Spectroscopic investigation of these complexes revealed a direct correlation between H-bond strength and g-value dispersion in the rhombic EPR signal. Using density functional theory (DFT), we elucidated the electronic origins of the narrow, rhombic EPR signal in heme-thiolates, which arises from an Fe-S pπ-dπ bonding interaction. Computational analysis of the intramolecularly H-bonded heme-thiolate models revealed that H-bond donation to the coordinating thiolate reduces thiolate donor strength and weakens this Fe-S interaction, giving rise to larger g-value dispersion. By defining the relationship between heme-thiolate electronic structure and rhombic EPR signal, it is possible to compare thiolate donor strengths among heme-thiolate proteins through analysis of low-spin, Fe(III) EPR spectra. Thus, this study establishes EPR spectroscopy as a valuable tool for exploring how second coordination sphere effects influence heme-thiolate protein function.


Assuntos
Hemeproteínas/química , Compostos de Sulfidrila/química , Teoria da Densidade Funcional , Espectroscopia de Ressonância de Spin Eletrônica , Ligação de Hidrogênio , Ligantes , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA