Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(28): E5664-E5672, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28652347

RESUMO

Here we investigated in primary human erythroid tissues a downstream element of the heterochronic let-7 miRNA pathway, the insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), for its potential to affect the hemoglobin profiles in human erythroblasts. Comparison of adult bone marrow to fetal liver lysates demonstrated developmental silencing in IGF2BP1. Erythroid-specific overexpression of IGF2BP1 caused a nearly complete and pancellular reversal of the adult pattern of hemoglobin expression toward a more fetal-like phenotype. The reprogramming of hemoglobin expression was achieved at the transcriptional level by increased gamma-globin combined with decreased beta-globin transcripts resulting in gamma-globin rising to 90% of total beta-like mRNA. Delta-globin mRNA was reduced to barely detectable levels. Alpha-globin levels were not significantly changed. Fetal hemoglobin achieved levels of 68.6 ± 3.9% in the IGF2BP1 overexpression samples compared with 5.0 ± 1.8% in donor matched transduction controls. In part, these changes were mediated by reduced protein expression of the transcription factor BCL11A. mRNA stability and polysome studies suggest IGF2BP1 mediates posttranscriptional loss of BCL11A. These results suggest a mechanism for chronoregulation of fetal and adult hemoglobin expression in humans.


Assuntos
Proteínas de Transporte/metabolismo , Eritroblastos/metabolismo , Hemoglobina Fetal/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Medula Óssea/metabolismo , Células HEK293 , Proteína HMGA2/metabolismo , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fígado/embriologia , Fenótipo , RNA Mensageiro/metabolismo , Proteínas Repressoras , Globinas beta/metabolismo , gama-Globinas/metabolismo
2.
Proc Natl Acad Sci U S A ; 114(5): E689-E696, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096387

RESUMO

Although it has been known for more than 60 years that the cause of sickle cell disease is polymerization of a hemoglobin mutant, hydroxyurea is the only drug approved for treatment by the US Food and Drug Administration. This drug, however, is only partially successful, and the discovery of additional drugs that inhibit fiber formation has been hampered by the lack of a sensitive and quantitative cellular assay. Here, we describe such a method in a 96-well plate format that is based on laser-induced polymerization in sickle trait cells and robust, automated image analysis to detect the precise time at which fibers distort ("sickle") the cells. With this kinetic method, we show that small increases in cell volume to reduce the hemoglobin concentration can result in therapeutic increases in the delay time prior to fiber formation. We also show that, of the two drugs (AES103 and GBT440) in clinical trials that inhibit polymerization by increasing oxygen affinity, one of them (GBT440) also inhibits sickling in the absence of oxygen by two additional mechanisms.


Assuntos
Antidrepanocíticos/farmacologia , Tamanho Celular/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Furaldeído/análogos & derivados , Anemia Falciforme/terapia , Eritrócitos/fisiologia , Furaldeído/farmacologia , Hemoglobina Falciforme/metabolismo , Humanos , Cinética , Oxigênio
3.
Transfusion ; 58(11): 2693-2704, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30312480

RESUMO

BACKGROUND: The 1000 Genomes Project provides a database of genomic variants from whole genome sequencing of 2504 individuals across five continental superpopulations. This database can enrich our background knowledge of worldwide blood group variant geographic distribution and identify novel variants of potential clinical significance. STUDY DESIGN AND METHODS: The 1000 Genomes database was analyzed to 1) expand knowledge about continental distributions of known blood group variants, 2) identify novel variants with antigenic potential and their geographic association, and 3) establish a baseline scaffold of chromosomal coordinates to translate next-generation sequencing output files into a predicted red blood cell (RBC) phenotype. RESULTS: Forty-two genes were investigated. A total of 604 known variants were mapped to the GRCh37 assembly; 120 of these were reported by 1000 Genomes in at least one superpopulation. All queried variants, including the ACKR1 promoter silencing mutation, are located within exon pull-down boundaries. The analysis yielded 41 novel population distributions for 34 known variants, as well as 12 novel blood group variants that warrant further validation and study. Four prediction algorithms collectively flagged 79 of 109 (72%) known antigenic or enzymatically detrimental blood group variants, while 4 of 12 variants that do not result in an altered RBC phenotype were flagged as deleterious. CONCLUSION: Next-generation sequencing has known potential for high-throughput and extended RBC phenotype prediction; a database of GRCh37 and GRCh38 chromosomal coordinates for 120 worldwide blood group variants is provided as a basis for this clinical application.


Assuntos
Genoma Humano/genética , Genômica/métodos , Algoritmos , Antígenos de Grupos Sanguíneos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
4.
J Transl Med ; 15(1): 169, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28768505

RESUMO

BACKGROUND: In humans, the heterochronic cascade composed of the RNA-binding protein LIN28 and its major target, the let-7 family of microRNAs (miRNAs), is highly regulated during human erythroid ontogeny. Additionally, down-regulation of the let-7 miRNAs in cultured adult CD34(+) cells or the over-expression of LIN28 in cultured erythrocytes from pediatric patients with HbSS genotype causes increased levels of fetal hemoglobin (HbF) in the range of 19-40% of the total. Therefore, we hypothesized that focused targeting of individual let-7 miRNA family members would exhibit regulatory effect on HbF expression in human adult erythroblasts. METHODS: The expression levels of mature let-7 family members were measured by RT-qPCR in purified cell populations sorted from peripheral blood. To study the effects of let-7 miRNAs upon globin expression, a lentiviral construct that incorporated the tough decoy (TuD) design to target let-7a or let-7b was compared with empty vector controls. Transductions were performed in CD34(+) cells from adult healthy volunteers cultivated ex vivo in erythropoietin-supplemented serum-free media for 21 days. Downstream analyses included RT-qPCR, Western blot and HPLC for the characterization of adult and fetal hemoglobins. RESULTS: The expression of individual let-7 miRNA family members in adult peripheral blood cell populations demonstrated that let-7a and let-7b miRNAs are expressed at much higher levels than the other let-7 family members in purified adult human blood cell subsets with expression being predominantly in reticulocytes. Therefore, we focused this study upon the targeted inhibition of let-7a and let-7b with the TuD design to explore its effects upon developmentally-timed erythroid genes. Let-7a-TuD transductions significantly increased gamma-globin mRNA expression and HbF to an average of 38%. Let-7a-TuD also significantly decreased the mRNA expression of some ontogeny-regulated erythroid genes, namely CA1 and GCNT2. In addition, the erythroid-related transcription factors BCL11A and HMGA2 were down- and up-regulated, respectively, by let-7a-TuD, while ZBTB7A, KLF1 and SOX6 remained unchanged. CONCLUSIONS: Overall, our data demonstrate that let-7 miRNAs are differentially expressed in human hematopoietic cells, and that targeted inhibition of the highly-expressed species of this family is sufficient for developmentally-specific changes in gamma-globin expression and HbF levels.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , MicroRNAs/metabolismo , Adulto , Sequência de Bases , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Diferenciação Celular , Proliferação de Células/genética , Células Cultivadas , Hemoglobina Fetal , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Proteína HMGA2/genética , Proteína HMGA2/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos , MicroRNAs/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras , Reticulócitos/metabolismo , gama-Globinas/genética , gama-Globinas/metabolismo
5.
Blood ; 126(5): 665-72, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-25979948

RESUMO

Induction of fetal hemoglobin (HbF) production in adult erythrocytes can reduce the severity of sickle cell disease and ß-thalassemia. Transcription of ß-globin genes is regulated by the distant locus control region (LCR), which is brought into direct gene contact by the LDB1/GATA-1/TAL1/LMO2-containing complex. Inhibition of G9a H3K9 methyltransferase by the chemical compound UNC0638 activates fetal and represses adult ß-globin gene expression in adult human hematopoietic precursor cells, but the underlying mechanisms are unclear. Here we studied UNC0638 effects on ß-globin gene expression using ex vivo differentiation of CD34(+) erythroid progenitor cells from peripheral blood of healthy adult donors. UNC0638 inhibition of G9a caused dosed accumulation of HbF up to 30% of total hemoglobin in differentiated cells. Elevation of HbF was associated with significant activation of fetal γ-globin and repression of adult ß-globin transcription. Changes in gene expression were associated with widespread loss of H3K9me2 in the locus and gain of LDB1 complex occupancy at the γ-globin promoters as well as de novo formation of LCR/γ-globin contacts. Our findings demonstrate that G9a establishes epigenetic conditions preventing activation of γ-globin genes during differentiation of adult erythroid progenitor cells. In this view, manipulation of G9a represents a promising epigenetic approach for treatment of ß-hemoglobinopathies.


Assuntos
Hemoglobina Fetal/biossíntese , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Região de Controle de Locus Gênico , gama-Globinas/genética , Adulto , Anemia Falciforme/sangue , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/genética , Diferenciação Celular , Proteínas de Ligação a DNA/sangue , Inibidores Enzimáticos/farmacologia , Epigênese Genética/efeitos dos fármacos , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/efeitos dos fármacos , Células Precursoras Eritroides/metabolismo , Eritropoese , Antígenos de Histocompatibilidade , Humanos , Técnicas In Vitro , Proteínas com Domínio LIM/sangue , Modelos Biológicos , Regiões Promotoras Genéticas , Quinazolinas/farmacologia , Fatores de Transcrição/sangue , Talassemia beta/sangue , Talassemia beta/tratamento farmacológico , Talassemia beta/genética
6.
Transfusion ; 56(2): 511-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26505619

RESUMO

BACKGROUND: Cell selection is an important part of manufacturing cellular therapies. A new highly automated instrument, the CliniMACS Prodigy (Miltenyi Biotec), was evaluated for the selection of CD34+ cells from mobilized peripheral blood stem cell (PBSC) concentrates using monoclonal antibodies conjugated to paramagnetic particles. STUDY DESIGN AND METHODS: PBSCs were collected by apheresis from 36 healthy subjects given granulocyte-colony-stimulating factor (G-CSF) or G-CSF plus plerixafor. CD34+ cells from 11 PBSC concentrates were isolated with the automated CliniMACS Prodigy and 25 with the semiautomated CliniMACS Plus Instrument. RESULTS: The proportion of CD34+ cells in the selected products obtained with the two instruments was similar: 93.6 ± 2.6% for the automated and 95.7 ± 3.3% for the semiautomated instrument (p > 0.05). The recovery of CD34+ cells from PBSC concentrates was less for the automated than the semiautomated instrument (51.4 ± 8.2% vs. 65.1 ± 15.7%; p = 0.019). The selected products from both instruments contained few and similar quantities of platelets (PLTs) and red blood cells. The depletion of CD3+ cells was less with the automated instrument (4.34 ± 0.2 log depletion vs. 5.20 ± 0.35 log depletion; p < 1 × 10(-6) ). Removal of PLTs from PBSC concentrates by washing was associated with better CD34+ cell recovery. We explored the reasons for lower CD34+ cell recovery by the Prodigy and found that the nonselected cells for the Prodigy contained more PLTs than those for the CliniMACS Plus. CONCLUSIONS: CD34+ cells can be effectively selected from mobilized PBSC concentrates with the CliniMAC Prodigy, but the recovery of CD34+ cells and depletion of CD3+ cells was lower than with the semiautomated CliniMACS Plus Instrument.


Assuntos
Remoção de Componentes Sanguíneos/instrumentação , Remoção de Componentes Sanguíneos/métodos , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Compostos Heterocíclicos/administração & dosagem , Antígenos CD34/sangue , Benzilaminas , Ciclamos , Feminino , Células-Tronco Hematopoéticas/metabolismo , Humanos , Masculino
7.
Blood ; 122(6): 1034-41, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23798711

RESUMO

Reactivation of fetal hemoglobin (HbF) holds therapeutic potential for sickle cell disease and ß-thalassemias. In human erythroid cells and hematopoietic organs, LIN28B and its targeted let-7 microRNA family, demonstrate regulated expression during the fetal-to-adult developmental transition. To explore the effects of LIN28B in human erythroid cell development, lentiviral transduction was used to knockdown LIN28B expression in erythroblasts cultured from human umbilical cord CD34+ cells. The subsequent reduction in LIN28B expression caused increased expression of let-7 and significantly reduced HbF expression. Conversely, LIN28B overexpression in cultured adult erythroblasts reduced the expression of let-7 and significantly increased HbF expression. Cellular maturation was maintained including enucleation. LIN28B expression in adult erythroblasts increased the expression of γ-globin, and the HbF content of the cells rose to levels >30% of their hemoglobin. Expression of carbonic anhydrase I, glucosaminyl (N-acetyl) transferase 2, and miR-96 (three additional genes marking the transition from fetal-to-adult erythropoiesis) were reduced by LIN28B expression. The transcription factor BCL11A, a well-characterized repressor of γ-globin expression, was significantly down-regulated. Independent of LIN28B, experimental suppression of let-7 also reduced BCL11A expression and significantly increased HbF expression. LIN28B expression regulates HbF levels and causes adult human erythroblasts to differentiate with a more fetal-like phenotype.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Eritroblastos/citologia , Eritrócitos/citologia , Hemoglobina Fetal/metabolismo , Regulação da Expressão Gênica , Antígenos CD34/metabolismo , Anidrase Carbônica I/metabolismo , Técnicas de Cultura de Células , Sangue Fetal/citologia , Hemoglobina A/metabolismo , Humanos , MicroRNAs/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Fenótipo , Proteínas de Ligação a RNA
8.
J Infect Dis ; 210(7): 1100-9, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24688070

RESUMO

BACKGROUND: The mechanisms by which α-thalassemia and sickle cell traits confer protection from severe Plasmodium falciparum malaria are not yet fully elucidated. We hypothesized that hemoglobinopathic erythrocytes reduce the intraerythrocytic multiplication of P. falciparum, potentially delaying the development of life-threatening parasite densities until parasite clearing immunity is achieved. METHODS: We developed a novel in vitro assay to quantify the number of merozoites released from an individual schizont, termed the "intraerythrocytic multiplication factor" (IMF). RESULTS: P. falciparum (3D7 line) schizonts produce variable numbers of merozoites in all erythrocyte types tested, with median IMFs of 27, 27, 29, 23, and 23 in control, HbAS, HbSS, and α- and ß-thalassemia trait erythrocytes, respectively. IMF correlated strongly (r(2) = 0.97; P < .001) with mean corpuscular hemoglobin concentration, and varied significantly with mean corpuscular volume and hemoglobin content. Reduction of IMFs in thalassemia trait erythrocytes was confirmed using clinical parasite isolates with different IMFs. Mathematical modeling of the effect of IMF on malaria progression indicates that the lower IMF in thalassemia trait erythrocytes limits parasite density and anemia severity over the first 2 weeks of parasite replication. CONCLUSIONS: P. falciparum IMF, a parasite heritable virulence trait, correlates with erythrocyte indices and is reduced in thalassemia trait erythrocytes. Parasite IMF should be examined in other low-indices erythrocytes.


Assuntos
Eritrócitos/parasitologia , Hemoglobinopatias , Merozoítos/crescimento & desenvolvimento , Carga Parasitária , Plasmodium falciparum/crescimento & desenvolvimento , Humanos , Modelos Teóricos
9.
Br J Haematol ; 167(5): 692-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25209728

RESUMO

In transfusional iron overload, extra-hepatic iron distribution differs, depending on the underlying condition. Relative mechanisms of plasma non-transferrin bound iron (NTBI) generation may account for these differences. Markers of iron metabolism (plasma NTBI, labile iron, hepcidin, transferrin, monocyte SLC40A1 [ferroportin]), erythropoiesis (growth differentiation factor 15, soluble transferrin receptor) and tissue hypoxia (erythropoietin) were compared in patients with Thalassaemia Major (TM), Sickle Cell Disease and Diamond-Blackfan Anaemia (DBA), with matched transfusion histories. The most striking differences between these conditions were relationships of NTBI to erythropoietic markers, leading us to propose three mechanisms of NTBI generation: iron overload (all), ineffective erythropoiesis (predominantly TM) and low transferrin-iron utilization (DBA).


Assuntos
Anemia de Diamond-Blackfan/sangue , Anemia Falciforme/sangue , Ferro/sangue , Talassemia/sangue , Transferrina , Adolescente , Adulto , Anemia de Diamond-Blackfan/terapia , Anemia Falciforme/terapia , Biomarcadores/sangue , Proteínas Sanguíneas/metabolismo , Transfusão de Sangue , Eritropoese , Feminino , Humanos , Sobrecarga de Ferro/sangue , Sobrecarga de Ferro/etiologia , Masculino , Talassemia/terapia
10.
Am J Hematol ; 89(9): 904-6, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24891147

RESUMO

Prior analyses of the Cooperative Study of Sickle Cell Disease (CSSCD) newborn cohort identified elevated white blood cell (WBC) count, low baseline hemoglobin and dactylitis between the ages of 1 and 2 years as markers of severe disease. Reticulocytosis was also associated with severe disease. Here, we further analyzed data collected on enrolled CSSCD infants for the predictive value of those markers for stroke and death later in life. Three hundred fifty-four CSSCD subjects were identified who had absolute reticulocyte counts (ARC) measured during infancy (2 to 6 months of age). Infants with higher ARC had significantly increased risk of stroke or death during childhood; lower hemoglobin levels also increased the risk but to a lesser degree than ARC. WBC levels and dactylitis were not predictive of death or stroke. These data suggest that reticulocytosis among asymptomatic infants with sickle cell anemia is associated with an increased risk of death or stroke during childhood.


Assuntos
Anemia Falciforme/sangue , Anemia Falciforme/mortalidade , Reticulócitos , Reticulocitose , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/mortalidade , Anemia Falciforme/complicações , Pré-Escolar , Feminino , Hemoglobinas/análise , Humanos , Lactente , Recém-Nascido , Estimativa de Kaplan-Meier , Contagem de Leucócitos , Masculino , Valor Preditivo dos Testes , Contagem de Reticulócitos , Reticulócitos/citologia , Risco , Acidente Vascular Cerebral/etiologia
11.
Nat Med ; 13(9): 1096-101, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17721544

RESUMO

In thalassemia, deficient globin-chain production during erythropoiesis results in anemia. Thalassemia may be further complicated by iron overload (frequently exacerbated by blood transfusion), which induces numerous endocrine diseases, hepatic cirrhosis, cardiac failure and even death. Accumulation of iron in the absence of blood transfusions may result from inappropriate suppression of the iron-regulating peptide hepcidin by an erythropoietic mechanism. To test this hypothesis, we examined erythroblast transcriptome profiles from 15 healthy, nonthalassemic donors. Growth differentiation factor 15 (GDF15), a member of the transforming growth factor-beta superfamily, showed increased expression and secretion during erythroblast maturation. Healthy volunteers had mean GDF15 serum concentrations of 450 +/- 50 pg/ml. In comparison, individuals with beta-thalassemia syndromes had elevated GDF15 serum levels (mean 66,000 +/- 9,600 pg/ml; range 4,800-248,000 pg/ml; P < 0.05) that were positively correlated with the levels of soluble transferrin receptor, erythropoietin and ferritin. Serum from thalassemia patients suppressed hepcidin mRNA expression in primary human hepatocytes, and depletion of GDF15 reversed hepcidin suppression. These results suggest that GDF15 overexpression arising from an expanded erythroid compartment contributes to iron overload in thalassemia syndromes by inhibiting hepcidin expression.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Citocinas/sangue , Regulação da Expressão Gênica , Talassemia/sangue , Talassemia/genética , Perfilação da Expressão Gênica , Fator 15 de Diferenciação de Crescimento , Hepcidinas , Humanos , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , Valores de Referência , Transcrição Gênica
12.
Cytometry A ; 81(2): 165-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22170815

RESUMO

Erythroid biology research involving rhesus macaques has been applied to several topics including malaria, hemoglobinopathy and gene therapy research. However, analyses of the rhesus red blood cells are limited by the inability to identify and sort those cells in research blood samples using flow cytometry. Here it is reported that the BRIC 6 hybridoma clone raised to the human erythroid surface molecule (referred to as CD233, Band 3, AE1, or SLC4A1) produces cross-reactive and erythroid-specific antibodies for flow cytometric detection and sorting of rhesus macaque erythrocytes.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito/imunologia , Anticorpos Monoclonais/imunologia , Reações Cruzadas/imunologia , Eritrócitos/imunologia , Citometria de Fluxo/métodos , Macaca mulatta/imunologia , Sequência de Aminoácidos , Animais , Proteína 1 de Troca de Ânion do Eritrócito/química , Eritrócitos/citologia , Glicoforinas/metabolismo , Humanos , Dados de Sequência Molecular
13.
Biochemistry ; 50(45): 9752-66, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21977904

RESUMO

We have previously shown that hydrogen peroxide (H(2)O(2)) triggers irreversible oxidation of amino acids exclusive to the ß-chains of purified human hemoglobin (HbAo). However, it is not clear, whether α- or ß-subunit Hb variants exhibit different oxidative resistance to H(2)O(2) when compared to their native HbAo. Hb Providence contains two ß-subunit variants with single amino acid mutations at ßLys82→Asp (ßK82D) and at ßLys82→Asn (ßK82N) positions and binds oxygen at lower affinity than wild type HbA. We have separated Hb Providence into its 3 component fractions, and contrasted oxidative reactions of its ß-mutant fractions with HbAo. Relative to HbAo, both ßK82N and ßK82D fractions showed similar autoxidation kinetics and similar initial oxidation reaction rates with H(2)O(2). However, a more profound pattern of changes was seen in HbAo than in the two Providence fractions. The structural changes in HbAo include a collapse of ß-subunits, and α-α dimer formation in the presence of excess H(2)O(2). Mass spectrometric and amino acid analysis revealed that ßCys93 and ßCys112 were oxidized in the HbAo fraction, consistent with oxidative pathways driven by a ferrylHb and its protein radical. These amino acids were oxidized at a lesser extent in ßK82D fraction. While the 3 isolated components of Hb Providence exhibited similar ligand binding and oxidation reaction kinetics, the variant fractions were more effective in consuming H(2)O(2) and safely internalizing radicals through the ferric/ferryl pseudoperoxidase cycle.


Assuntos
Hemoglobina A/química , Hemoglobina A/metabolismo , Hemoglobina J/química , Hemoglobina J/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Óxidos N-Cíclicos , Ácido Cisteico/química , Dimerização , Globinas/química , Heme/química , Hemoglobina A/genética , Hemoglobina J/genética , Humanos , Técnicas In Vitro , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Estresse Oxidativo , Estabilidade Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas , Espectrometria de Massas por Ionização por Electrospray , Marcadores de Spin , Espectrometria de Massas em Tandem
14.
Blood ; 114(1): 181-6, 2009 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-19414861

RESUMO

In thalassemia and other iron loading anemias, ineffective erythropoiesis and erythroid signaling molecules are thought to cause inappropriate suppression of a small peptide produced by hepatocytes named hepcidin. Previously, it was reported that the erythrokine GDF15 is expressed at very high levels in thalassemia and suppresses hepcidin expression. In this study, erythroblast expression of a second molecule named twisted gastrulation (TWSG1) was explored as a potential erythroid regulator of hepcidin. Transcriptome analyses suggest TWSG1 is produced during the earlier stages of erythropoiesis. Hepcidin suppression assays demonstrated inhibition by TWSG1 as measured by quantitative polymerase chain reaction (PCR) in dosed assays (1-1000 ng/mL TWSG1). In human cells, TWSG1 suppressed hepcidin indirectly by inhibiting the signaling effects and associated hepcidin up-regulation by bone morphogenic proteins 2 and 4 (BMP2/BMP4). In murine hepatocytes, hepcidin expression was inhibited by murine Twsg1 in the absence of additional BMP. In vivo studies of Twsg1 expression were performed in healthy and thalassemic mice. Twsg1 expression was significantly increased in the spleen, bone marrow, and liver of the thalassemic animals. These data demonstrate that twisted gastrulation protein interferes with BMP-mediated hepcidin expression and may act with GDF15 to dysregulate iron homeostasis in thalassemia syndromes.


Assuntos
Peptídeos Catiônicos Antimicrobianos/fisiologia , Citocinas/fisiologia , Eritropoese/fisiologia , Proteínas/fisiologia , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Proteína Morfogenética Óssea 2/fisiologia , Proteína Morfogenética Óssea 4/fisiologia , Citocinas/genética , Eritropoese/genética , Feminino , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/fisiologia , Hepatócitos/citologia , Hepatócitos/fisiologia , Hepcidinas , Homeostase , Humanos , Ferro/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Proteínas/genética , Proteínas Smad/fisiologia , Talassemia/sangue , Talassemia/genética , Talassemia/patologia , Talassemia/fisiopatologia
15.
Blood ; 114(11): 2299-306, 2009 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-19597182

RESUMO

Therapeutic regulation of globin genes is a primary goal of translational research aimed toward hemoglobinopathies. Signal transduction was used to identify chromatin modifications and transcription factor expression patterns that are associated with globin gene regulation. Histone modification and transcriptome profiling were performed using adult primary CD34(+) cells cultured with cytokine combinations that produced low versus high levels of gamma-globin mRNA and fetal hemoglobin (HbF). Embryonic, fetal, and adult globin transcript and protein expression patterns were determined for comparison. Chromatin immunoprecipitation assays revealed RNA polymerase II occupancy and histone tail modifications consistent with transcriptional activation only in the high-HbF culture condition. Transcriptome profiling studies demonstrated reproducible changes in expression of nuclear transcription factors associated with high HbF. Among the 13 genes that demonstrated differential transcript levels, 8 demonstrated nuclear protein expression levels that were significantly changed by cytokine signal transduction. Five of the 8 genes are recognized regulators of erythropoiesis or globin genes (MAFF, ID2, HHEX, SOX6, and EGR1). Thus, cytokine-mediated signal transduction in adult erythroid cells causes significant changes in the pattern of globin gene and protein expression that are associated with distinct histone modifications as well as nuclear reprogramming of erythroid transcription factors.


Assuntos
Citocinas/metabolismo , Células Eritroides/metabolismo , Hemoglobina Fetal/biossíntese , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/metabolismo , Adulto , Antígenos CD34 , Células Cultivadas , Células Eritroides/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hemoglobinopatias/metabolismo , Humanos , RNA Polimerase II/metabolismo , Transdução de Sinais , Transcrição Gênica
16.
Pediatr Blood Cancer ; 56(1): 103-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21108444

RESUMO

BACKGROUND: Treatment-associated fetal hemoglobin (HbF) expression patterns in children with sickle cell disease (SCD) have not been fully described. The objective of this study was to compare HbF expression profiles (HbF and F-cells) in the peripheral blood of pediatric SCD patients receiving hydroxyurea (HU), chronic transfusions (Tx) or no chronic therapy (Ctrl). PROCEDURE: Peripheral blood samples were collected from SCD patients between 1 month and 21 years of age and immunostained with anti-HbF and anti-HbA antibodies. Erythrocytes containing HbF (F-cells) were enumerated with this dual staining method. HbF was measured using chromatography (HPLC). RESULTS: Blood from 44 Ctrl patients ≤ 4 years of age was compared with that from older children (50 Ctrl, 17 HU, 17 Tx). Among the older children, the percentage of both HbF and F-cells in the Tx group was significantly decreased compared to the control (HbF 5.4 ± 4.2% vs. 11.0 ± 7.2%, P = 0.003; F-cells 30.2 ± 16.3% vs. 43.8 ± 20.4%, P = 0.0071). While the distribution of F-cells was significantly increased in the HU group (56.3 ± 17.1% vs. 43.8 ± 20.4%, P = 0.016), the increase in HbF was less robust (14.7 ± 6.4% vs. 11.0 ± 7.2%, P = 0.051). Positive correlations of HbF and F-cell distributions were noted in all groups (P < 0.0001 for all groups). In serial samples from individual patients, relatively static patterns of HbF and F-cell distribution were noted. CONCLUSION: Pediatric SCD patients possess distinct patterns of HbF switching and silencing in peripheral blood erythrocytes. Thereafter, erythrocyte HbF expression level and distribution are maintained with both patient- and treatment-specific patterns that may be useful for predicting the need or response to HbF-modulating therapy.


Assuntos
Anemia Falciforme/sangue , Eritrócitos Anormais/patologia , Hemoglobina Fetal/análise , Adolescente , Anemia Falciforme/terapia , Transfusão de Sangue , Criança , Pré-Escolar , Contagem de Eritrócitos , Humanos , Hidroxiureia/uso terapêutico , Lactente , Adulto Jovem
17.
Curr Opin Hematol ; 17(3): 184-90, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20182355

RESUMO

PURPOSE OF REVIEW: Growth differentiation factor 15 (GDF15) was identified as a hepcidin-suppression factor that is expressed at high levels in patients with ineffective erythropoiesis. This review addresses the regulation, expression and potential functions of GDF15 in the context of erythroid biology. RECENT FINDINGS: GDF15 expression during late erythroid differentiation was discovered as part of an erythroblast transcriptome project. As GDF15 expression is associated with cellular stress or apoptosis, further investigation of the cytokine was focused upon its involvement in ineffective erythropoiesis. Remarkably high serum levels were detected in patients with thalassemia syndromes, congenital dyserythropoiesis and some acquired sideroblastic anemias. High-level GDF15 expression is not a feature of normal erythropoiesis, or erythroid recovery after bone-marrow transplantation. As GDF15 is a transforming growth factor-beta superfamily member, it was investigated as an effector of ineffective erythropoiesis that suppresses hepcidin expression despite iron overloading. SUMMARY: In contrast to the low levels of GDF15 expressed during normal erythropoiesis, ineffective erythropoiesis causes high-level expression of GDF15. In patients with thalassemia and related anemias, GDF15 expression may contribute to iron overloading or other features of the disease phenotype.


Assuntos
Anemia/metabolismo , Eritropoese/fisiologia , Fator 15 de Diferenciação de Crescimento/metabolismo , Sobrecarga de Ferro/metabolismo , Talassemia/metabolismo , Anemia/patologia , Animais , Humanos , Sobrecarga de Ferro/patologia , Talassemia/patologia
18.
Blood ; 112(13): 5241-4, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18824595

RESUMO

Congenital dyserythropoietic anemia (CDA) is a rare group of red blood cell disorders characterized by ineffective erythropoiesis and increased iron absorption. To determine whether growth differentation factor 15 (GDF15) hyper-expression is associated with the ineffective erythropoiesis and iron-loading complications of CDA type I (CDA I), GDF15 levels and other markers of erythropoiesis and iron overload were studied in blood from 17 CDA I patients. Significantly higher levels of GDF15 were detected among the CDA I patients (10 239 +/- 3049 pg/mL) compared with healthy volunteers (269 +/- 238 pg/mL). In addition, GDF15 correlated significantly with several erythropoietic and iron parameters including Hepcidin-25, Ferritin, and Hepcidin-25/Ferritin ratios. These novel results suggest that CDA I patients express very high levels of serum GDF15, and that GDF15 contributes to the inappropriate suppression of hepcidin with subsequent secondary hemochromatosis.


Assuntos
Anemia Diseritropoética Congênita/etiologia , Fator 15 de Diferenciação de Crescimento/sangue , Peptídeos Catiônicos Antimicrobianos/sangue , Biomarcadores/sangue , Estudos de Casos e Controles , Eritropoese , Feminino , Ferritinas/sangue , Hepcidinas , Humanos , Ferro/metabolismo , Sobrecarga de Ferro , Israel , Masculino
19.
Transfusion ; 50(7): 1532-5, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20210929

RESUMO

BACKGROUND: Low serum hepcidin levels provide a physiologic response to iron demand in patients with iron deficiency (ID). Based on a discovery of suppressed hepcidin expression by a cytokine named growth differentiation factor 15 (GDF15), it was hypothesized that GDF15 may suppress hepcidin expression in humans with ID due to blood loss. STUDY DESIGN AND METHODS: To test this hypothesis, GDF15 and hepcidin levels were measured in peripheral blood from subjects with iron-deficient erythropoiesis before and after iron supplementation. RESULTS: Iron variables and hepcidin levels were significantly suppressed in iron-deficient blood donors compared to healthy volunteers. However, ID was not associated with elevated serum levels of GDF15. Instead, iron-deficient subjects' GDF15 levels were slightly lower than those measured in the control group of subjects (307 +/- 90 and 386 +/- 104 pg/mL, respectively). Additionally, GDF15 levels were not significantly altered by iron repletion. CONCLUSIONS: ID due to blood loss is not associated with a significant change in serum levels of GDF15.


Assuntos
Doadores de Sangue , Fator 15 de Diferenciação de Crescimento/sangue , Deficiências de Ferro , Peptídeos Catiônicos Antimicrobianos/análise , Ferritinas/sangue , Hepcidinas , Humanos , Transferrina/análise
20.
Proc Natl Acad Sci U S A ; 104(49): 19500-5, 2007 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-18048346

RESUMO

The regulated clearance of mitochondria is a well recognized but poorly understood aspect of cellular homeostasis, and defects in this process have been linked to aging, degenerative diseases, and cancer. Mitochondria are recycled through an autophagy-related process, and reticulocytes, which completely eliminate their mitochondria during maturation, provide a physiological model to study this phenomenon. Here, we show that mitochondrial clearance in reticulocytes requires the BCL2-related protein NIX (BNIP3L). Mitochondrial clearance does not require BAX, BAK, BCL-X(L), BIM, or PUMA, indicating that NIX does not function through established proapoptotic pathways. Similarly, NIX is not required for the induction of autophagy during terminal erythroid differentiation. NIX is required for the selective elimination of mitochondria, however, because mitochondrial clearance, in the absence of NIX, is arrested at the stage of mitochondrial incorporation into autophagosomes and autophagosome maturation. These results yield insight into the mechanism of mitochondrial clearance in higher eukaryotes. Furthermore, they show a BAX- and BAK-independent role for a BCL2-related protein in development.


Assuntos
Autofagia , Eritropoese , Proteínas de Membrana/fisiologia , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas/fisiologia , Reticulócitos/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Apoptose/genética , Autofagia/genética , Eritropoese/genética , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Reticulócitos/metabolismo , Reticulócitos/ultraestrutura , Proteínas Supressoras de Tumor/genética , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA