Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Biomater ; 175: 186-198, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38151068

RESUMO

Advanced maternal age during pregnancy is associated with increased risk of vaginal tearing during delivery and maladaptive postpartum healing. Although the underlying mechanisms of age-related vaginal injuries are not fully elucidated, changes in vaginal microstructure may contribute. Smooth muscle cells promote the contractile nature of the vagina and contribute to pelvic floor stability. While menopause is associated with decreased vaginal smooth muscle content, whether contractile changes occur before the onset of menopause remains unknown. Therefore, the first objective of this study was to quantify the active mechanical behavior of the murine vagina with age. Further, aging is associated with decreased vaginal elastin content. As such, the second objective was to determine if elastic fiber disruption alters vaginal contractility. Vaginal samples from mice aged 2-14 months were used in maximum contractility experiments and biaxial extension-inflation protocols. To evaluate the role of elastic fibers with age, half of the vaginal samples were randomly allocated to enzymatic elastic fiber disruption. Contractile potential decreased and vaginal material stiffness increased with age. These age-related changes in smooth muscle function may be due, in part, to changes in microstructural composition or contractile gene expression. Furthermore, elastic fiber disruption had a diminished effect on smooth muscle contractility in older mice. This suggests a decreased functional role of elastic fibers with age. Quantifying the age-dependent mechanical contribution of smooth muscle cells and elastic fibers to vaginal properties provides a first step towards better understanding how age-related changes in vaginal structure may contribute to tissue integrity and healing. STATEMENT OF SIGNIFICANCE: Advanced maternal age at the time of pregnancy is linked to increased risks of vaginal tearing during delivery, postpartum hemorrhaging, and the development of pelvic floor disorders. While the underlying causes of increased vaginal injuries with age and associated pathologies remain unclear, changes in vaginal microstructure, such as elastic fibers and smooth muscle cells, may contribute. Menopause is associated with fragmented elastic fibers and decreased smooth muscle content; however, how reproductive aging affects changes in the vaginal composition and the mechanical properties remains unknown. Quantifying the mechanical contribution of smooth muscle cells and elastic fibers to vaginal properties with age will advance understanding of the potential structural causes of age-related changes to tissue integrity and healing.


Assuntos
Tecido Elástico , Vagina , Gravidez , Feminino , Camundongos , Animais , Tecido Elástico/metabolismo , Músculo Liso , Miócitos de Músculo Liso , Contração Muscular/fisiologia
2.
Biomed Opt Express ; 15(5): 2863-2875, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38855688

RESUMO

Pelvic organ prolapse (POP) is a gynecological disorder described by the descent of superior pelvic organs into or out of the vagina as a consequence of disrupted muscles and tissue. A thorough understanding of the etiology of POP is limited by the availability of clinically relevant samples, restricting longitudinal POP studies on soft-tissue biomechanics and structure to POP-induced models such as fibulin-5 knockout (FBLN5-/- ) mice. Despite being a principal constituent in the extracellular matrix, little is known about structural perturbations to collagen networks in the FBLN5-/- mouse cervix. We identify significantly different collagen network populations in normal and prolapsed cervical cross-sections using two label-free, nonlinear microscopy techniques. Collagen in the prolapsed mouse cervix tends to be more isotropic, and displays reduced alignment persistence via 2-D Fourier transform analysis of images acquired using second harmonic generation microscopy. Furthermore, coherent Raman hyperspectral imaging revealed elevated disorder in the secondary structure of collagen in prolapsed tissues. Our results underscore the need for in situ multimodal monitoring of collagen organization to improve POP predictive capabilities.

3.
bioRxiv ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38352586

RESUMO

Pelvic organ prolapse (POP) is a gynecological disorder described by the descent of superior pelvic organs into or out of the vagina as a consequence of disrupted muscles and tissue. A thorough understanding of the etiology of POP is limited by the availability of clinically relevant samples, restricting longitudinal POP studies on soft-tissue biomechanics and structure to POP-induced models such as fibulin-5 knockout (FBLN5-/-) mice. Despite being a principal constituent in the extracellular matrix, little is known about structural perturbations to collagen networks in the FBLN5-/- mouse cervix. We identify significantly different collagen network populations in normal and prolapsed cervical cross-sections using two label-free, nonlinear microscopy techniques. Collagen in the prolapsed mouse cervix tends to be more isotropic, and displays reduced alignment persistence via 2-D Fourier Transform analysis of images acquired using second harmonic generation microscopy. Furthermore, coherent Raman hyperspectral imaging revealed elevated disorder in the secondary structure of collagen in prolapsed tissues. Our results underscore the need for in situ multimodal monitoring of collagen organization to improve POP predictive capabilities.

4.
Sci Rep ; 14(1): 586, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182631

RESUMO

Mammalian pregnancy requires gradual yet extreme remodeling of the reproductive organs to support the growth of the embryos and their birth. After delivery, the reproductive organs return to their non-pregnant state. As pregnancy has traditionally been understudied, there are many unknowns pertaining to the mechanisms behind this remarkable remodeling and repair process which, when not successful, can lead to pregnancy-related complications such as maternal trauma, pre-term birth, and pelvic floor disorders. This study presents the first longitudinal imaging data that focuses on revealing anatomical alterations of the vagina, cervix, and uterine horns during pregnancy and postpartum using the mouse model. By utilizing advanced magnetic resonance imaging (MRI) technology, T1-weighted and T2-weighted images of the reproductive organs of three mice in their in vivo environment were collected at five time points: non-pregnant, mid-pregnant (gestation day: 9-10), late pregnant (gestation day: 16-17), postpartum (24-72 h after delivery) and three weeks postpartum. Measurements of the vagina, cervix, and uterine horns were taken by analyzing MRI segmentations of these organs. The cross-sectional diameter, length, and volume of the vagina increased in late pregnancy and then returned to non-pregnant values three weeks after delivery. The cross-sectional diameter of the cervix decreased at mid-pregnancy before increasing in late pregnancy. The volume of the cervix peaked at late pregnancy before shortening by 24-72 h postpartum. As expected, the uterus increased in cross-sectional diameter, length, and volume during pregnancy. The uterine horns decreased in size postpartum, ultimately returning to their average non-pregnant size three weeks postpartum. The newly developed methods for acquiring longitudinal in vivo MRI scans of the murine reproductive system can be extended to future studies that evaluate functional and morphological alterations of this system due to pathologies, interventions, and treatments.


Assuntos
Imageamento por Ressonância Magnética , Útero , Feminino , Humanos , Gravidez , Animais , Camundongos , Útero/diagnóstico por imagem , Projetos de Pesquisa , Vagina/diagnóstico por imagem , Período Pós-Parto , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA