Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 595(7865): 125-129, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34108683

RESUMO

In higher eukaryotes, many genes are regulated by enhancers that are 104-106 base pairs (bp) away from the promoter. Enhancers contain transcription-factor-binding sites (which are typically around 7-22 bp), and physical contact between the promoters and enhancers is thought to be required to modulate gene expression. Although chromatin architecture has been mapped extensively at resolutions of 1 kilobase and above; it has not been possible to define physical contacts at the scale of the proteins that determine gene expression. Here we define these interactions in detail using a chromosome conformation capture method (Micro-Capture-C) that enables the physical contacts between different classes of regulatory elements to be determined at base-pair resolution. We find that highly punctate contacts occur between enhancers, promoters and CCCTC-binding factor (CTCF) sites and we show that transcription factors have an important role in the maintenance of the contacts between enhancers and promoters. Our data show that interactions between CTCF sites are increased when active promoters and enhancers are located within the intervening chromatin. This supports a model in which chromatin loop extrusion1 is dependent on cohesin loading at active promoters and enhancers, which explains the formation of tissue-specific chromatin domains without changes in CTCF binding.


Assuntos
Pareamento de Bases/genética , Genoma/genética , Animais , Sítios de Ligação , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Elementos Facilitadores Genéticos/genética , Células Eritroides/citologia , Células Eritroides/metabolismo , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Regiões Promotoras Genéticas/genética , alfa-Globinas/genética , Coesinas
2.
Cell ; 145(5): 692-706, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21596426

RESUMO

Little is known about how combinations of histone marks are interpreted at the level of nucleosomes. The second PHD finger of human BPTF is known to specifically recognize histone H3 when methylated on lysine 4 (H3K4me2/3). Here, we examine how additional heterotypic modifications influence BPTF binding. Using peptide surrogates, three acetyllysine ligands are indentified for a PHD-adjacent bromodomain in BPTF via systematic screening and biophysical characterization. Although the bromodomain displays limited discrimination among the three possible acetyllysines at the peptide level, marked selectivity is observed for only one of these sites, H4K16ac, in combination with H3K4me3 at the mononucleosome level. In support, these two histone marks constitute a unique trans-histone modification pattern that unambiguously resides within a single nucleosomal unit in human cells, and this module colocalizes with these marks in the genome. Together, our data call attention to nucleosomal patterning of covalent marks in dictating critical chromatin associations.


Assuntos
Antígenos Nucleares/metabolismo , Histonas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Nucleossomos/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Animais , Núcleo Celular/metabolismo , Cromatina/química , Cromatina/metabolismo , Código das Histonas , Histonas/química , Humanos , Modelos Moleculares , Nucleossomos/química , Peptídeos/química , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Xenopus
4.
Cell ; 141(7): 1183-94, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20541251

RESUMO

The MLL1 gene is a frequent target for recurrent chromosomal translocations, resulting in transformation of hematopoietic precursors into leukemia stem cells. Here, we report on structure-function studies that elucidate molecular events in MLL1 binding of histone H3K4me3/2 marks and recruitment of the cyclophilin CyP33. CyP33 contains a PPIase and a RRM domain and regulates MLL1 function through HDAC recruitment. We find that the PPIase domain of CyP33 regulates the conformation of MLL1 through proline isomerization within the PHD3-Bromo linker, thereby disrupting the PHD3-Bromo interface and facilitating binding of the MLL1-PHD3 domain to the CyP33-RRM domain. H3K4me3/2 and CyP33-RRM target different surfaces of MLL1-PHD3 and can bind simultaneously to form a ternary complex. Furthermore, the MLL1-CyP33 interaction is required for repression of HOXA9 and HOXC8 genes in vivo. Our results highlight the role of PHD3-Bromo cassette as a regulatory platform, orchestrating MLL1 binding of H3K4me3/2 marks and cyclophilin-mediated repression through HDAC recruitment.


Assuntos
Ciclofilinas/metabolismo , Histona Desacetilases/metabolismo , Proteína de Leucina Linfoide-Mieloide/química , Sequência de Aminoácidos , Linhagem Celular , Cristalografia por Raios X , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Humanos , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Prolina/química , Domínios e Motivos de Interação entre Proteínas
5.
Genome Res ; 31(7): 1159-1173, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34088716

RESUMO

Regulatory interactions mediated by transcription factors (TFs) make up complex networks that control cellular behavior. Fully understanding these gene regulatory networks (GRNs) offers greater insight into the consequences of disease-causing perturbations than can be achieved by studying single TF binding events in isolation. Chromosomal translocations of the lysine methyltransferase 2A (KMT2A) gene produce KMT2A fusion proteins such as KMT2A-AFF1 (previously MLL-AF4), causing poor prognosis acute lymphoblastic leukemias (ALLs) that sometimes relapse as acute myeloid leukemias (AMLs). KMT2A-AFF1 drives leukemogenesis through direct binding and inducing the aberrant overexpression of key genes, such as the anti-apoptotic factor BCL2 and the proto-oncogene MYC However, studying direct binding alone does not incorporate possible network-generated regulatory outputs, including the indirect induction of gene repression. To better understand the KMT2A-AFF1-driven regulatory landscape, we integrated ChIP-seq, patient RNA-seq, and CRISPR essentiality screens to generate a model GRN. This GRN identified several key transcription factors such as RUNX1 that regulate target genes downstream of KMT2A-AFF1 using feed-forward loop (FFL) and cascade motifs. A core set of nodes are present in both ALL and AML, and CRISPR screening revealed several factors that help mediate response to the drug venetoclax. Using our GRN, we then identified a KMT2A-AFF1:RUNX1 cascade that represses CASP9, as well as KMT2A-AFF1-driven FFLs that regulate BCL2 and MYC through combinatorial TF activity. This illustrates how our GRN can be used to better connect KMT2A-AFF1 behavior to downstream pathways that contribute to leukemogenesis, and potentially predict shifts in gene expression that mediate drug response.

6.
Cell ; 137(3): 459-71, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19410543

RESUMO

H2B ubiquitylation has been implicated in active transcription but is not well understood in mammalian cells. Beyond earlier identification of hBRE1 as the E3 ligase for H2B ubiquitylation in human cells, we now show (1) that hRAD6 serves as the cognate E2-conjugating enzyme; (2) that hRAD6, through direct interaction with hPAF-bound hBRE1, is recruited to transcribed genes and ubiquitylates chromatinized H2B at lysine 120; (3) that hPAF-mediated transcription is required for efficient H2B ubiquitylation as a result of hPAF-dependent recruitment of hBRE1-hRAD6 to the Pol II transcription machinery; (4) that H2B ubiquitylation per se does not affect the level of hPAF-, SII-, and p300-dependent transcription and likely functions downstream; and (5) that H2B ubiquitylation directly stimulates hSET1-dependent H3K4 di- and trimethylation. These studies establish the natural H2B ubiquitylation factors in human cells and also detail the mechanistic basis for H2B ubiquitylation and function during transcription.


Assuntos
Histonas/genética , Histonas/metabolismo , Ativação Transcricional , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular , DNA Polimerase II/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Metilação , Proteínas Nucleares/metabolismo , Fatores de Transcrição , Ubiquitinação
7.
Nature ; 558(7711): E5, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29849140

RESUMO

In Fig. 3c of this Letter, the the effects of CRISPR-Cas9-mediated deletion of NR3C1, TXNIP and CNR2 in patient-derived B-lineage leukaemia cells were shown. For curves depicting NR3C1 (left graph), data s for TXNIP (middle graph) were inadvertently plotted. This figure has been corrected online, and the original Fig. 3c is shown as Supplementary Information to this Amendment for transparency. The error does not affect the conclusions of the Letter. In addition, Source Data files have been added for the Figs. 1-4 and Extended Data Figs. 1-10 of the original Letter.

8.
Nature ; 542(7642): 479-483, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28192788

RESUMO

B-lymphoid transcription factors, such as PAX5 and IKZF1, are critical for early B-cell development, yet lesions of the genes encoding these transcription factors occur in over 80% of cases of pre-B-cell acute lymphoblastic leukaemia (ALL). The importance of these lesions in ALL has, until now, remained unclear. Here, by combining studies using chromatin immunoprecipitation with sequencing and RNA sequencing, we identify a novel B-lymphoid program for transcriptional repression of glucose and energy supply. Our metabolic analyses revealed that PAX5 and IKZF1 enforce a state of chronic energy deprivation, resulting in constitutive activation of the energy-stress sensor AMPK. Dominant-negative mutants of PAX5 and IKZF1, however, relieved this glucose and energy restriction. In a transgenic pre-B ALL mouse model, the heterozygous deletion of Pax5 increased glucose uptake and ATP levels by more than 25-fold. Reconstitution of PAX5 and IKZF1 in samples from patients with pre-B ALL restored a non-permissive state and induced energy crisis and cell death. A CRISPR/Cas9-based screen of PAX5 and IKZF1 transcriptional targets identified the products of NR3C1 (encoding the glucocorticoid receptor), TXNIP (encoding a glucose-feedback sensor) and CNR2 (encoding a cannabinoid receptor) as central effectors of B-lymphoid restriction of glucose and energy supply. Notably, transport-independent lipophilic methyl-conjugates of pyruvate and tricarboxylic acid cycle metabolites bypassed the gatekeeper function of PAX5 and IKZF1 and readily enabled leukaemic transformation. Conversely, pharmacological TXNIP and CNR2 agonists and a small-molecule AMPK inhibitor strongly synergized with glucocorticoids, identifying TXNIP, CNR2 and AMPK as potential therapeutic targets. Furthermore, our results provide a mechanistic explanation for the empirical finding that glucocorticoids are effective in the treatment of B-lymphoid but not myeloid malignancies. Thus, B-lymphoid transcription factors function as metabolic gatekeepers by limiting the amount of cellular ATP to levels that are insufficient for malignant transformation.


Assuntos
Linfócitos B/metabolismo , Metabolismo Energético/genética , Regulação Neoplásica da Expressão Gênica , Glucose/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Fatores de Transcrição/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Animais , Linfócitos B/efeitos dos fármacos , Carcinogênese/genética , Proteínas de Transporte/agonistas , Proteínas de Transporte/metabolismo , Morte Celular , Imunoprecipitação da Cromatina , Ciclo do Ácido Cítrico , Modelos Animais de Doenças , Feminino , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Humanos , Fator de Transcrição Ikaros/metabolismo , Camundongos , Camundongos Transgênicos , Fator de Transcrição PAX5/deficiência , Fator de Transcrição PAX5/genética , Fator de Transcrição PAX5/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Ácido Pirúvico/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/metabolismo , Receptores de Glucocorticoides/metabolismo , Análise de Sequência de RNA
9.
Basic Res Cardiol ; 117(1): 17, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35357563

RESUMO

Cardiac contractile strength is recognised as being highly pH-sensitive, but less is known about the influence of pH on cardiac gene expression, which may become relevant in response to changes in myocardial metabolism or vascularization during development or disease. We sought evidence for pH-responsive cardiac genes, and a physiological context for this form of transcriptional regulation. pHLIP, a peptide-based reporter of acidity, revealed a non-uniform pH landscape in early-postnatal myocardium, dissipating in later life. pH-responsive differentially expressed genes (pH-DEGs) were identified by transcriptomics of neonatal cardiomyocytes cultured over a range of pH. Enrichment analysis indicated "striated muscle contraction" as a pH-responsive biological process. Label-free proteomics verified fifty-four pH-responsive gene-products, including contractile elements and the adaptor protein CRIP2. Using transcriptional assays, acidity was found to reduce p300/CBP acetylase activity and, its a functional readout, inhibit myocardin, a co-activator of cardiac gene expression. In cultured myocytes, acid-inhibition of p300/CBP reduced H3K27 acetylation, as demonstrated by chromatin immunoprecipitation. H3K27ac levels were more strongly reduced at promoters of acid-downregulated DEGs, implicating an epigenetic mechanism of pH-sensitive gene expression. By tandem cytoplasmic/nuclear pH imaging, the cardiac nucleus was found to exercise a degree of control over its pH through Na+/H+ exchangers at the nuclear envelope. Thus, we describe how extracellular pH signals gain access to the nucleus and regulate the expression of a subset of cardiac genes, notably those coding for contractile proteins and CRIP2. Acting as a proxy of a well-perfused myocardium, alkaline conditions are permissive for expressing genes related to the contractile apparatus.


Assuntos
Núcleo Celular , Miocárdio , Animais , Expressão Gênica , Mamíferos , Contração Miocárdica , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo
10.
Blood ; 136(21): 2410-2415, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32599615

RESUMO

Although cytokine-mediated expansion of human hematopoietic stem cells (HSCs) can result in high yields of hematopoietic progenitor cells, this generally occurs at the expense of reduced bone marrow HSC repopulating ability, thereby limiting potential therapeutic applications. Because bromodomain-containing proteins (BCPs) have been demonstrated to regulate mouse HSC self-renewal and stemness, we screened small molecules targeting various BCPs as potential agents for ex vivo expansion of human HSCs. Of 10 compounds tested, only the bromodomain and extra-terminal motif inhibitor CPI203 enhanced the expansion of human cord blood HSCs without losing cell viability in vitro. The expanded cells also demonstrated improved engraftment and repopulation in serial transplantation assays. Transcriptomic and functional studies showed that the expansion of long-term repopulating HSCs was accompanied by synchronized expansion and maturation of megakaryocytes consistent with CPI203-mediated reprogramming of cord blood hematopoietic stem and progenitor cells. This approach may therefore prove beneficial for ex vivo gene editing, for enhanced platelet production, and for the improved usage of cord blood for transplantation research and therapy.


Assuntos
Acetamidas/farmacologia , Azepinas/farmacologia , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Sangue Fetal/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Megacariócitos/efeitos dos fármacos , Proteínas/antagonistas & inibidores , Animais , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Reprogramação Celular/efeitos dos fármacos , Sobrevivência de Enxerto/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Megacariócitos/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Transcriptoma/efeitos dos fármacos
11.
Blood ; 134(13): 1059-1071, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31383639

RESUMO

Human lymphopoiesis is a dynamic lifelong process that starts in utero 6 weeks postconception. Although fetal B-lymphopoiesis remains poorly defined, it is key to understanding leukemia initiation in early life. Here, we provide a comprehensive analysis of the human fetal B-cell developmental hierarchy. We report the presence in fetal tissues of 2 distinct CD19+ B-progenitors, an adult-type CD10+ve ProB-progenitor and a new CD10-ve PreProB-progenitor, and describe their molecular and functional characteristics. PreProB-progenitors and ProB-progenitors appear early in the first trimester in embryonic liver, followed by a sustained second wave of B-progenitor development in fetal bone marrow (BM), where together they form >40% of the total hematopoietic stem cell/progenitor pool. Almost one-third of fetal B-progenitors are CD10-ve PreProB-progenitors, whereas, by contrast, PreProB-progenitors are almost undetectable (0.53% ± 0.24%) in adult BM. Single-cell transcriptomics and functional assays place fetal PreProB-progenitors upstream of ProB-progenitors, identifying them as the first B-lymphoid-restricted progenitor in human fetal life. Although fetal BM PreProB-progenitors and ProB-progenitors both give rise solely to B-lineage cells, they are transcriptionally distinct. As with their fetal counterparts, adult BM PreProB-progenitors give rise only to B-lineage cells in vitro and express the expected B-lineage gene expression program. However, fetal PreProB-progenitors display a distinct, ontogeny-related gene expression pattern that is not seen in adult PreProB-progenitors, and they share transcriptomic signatures with CD10-ve B-progenitor infant acute lymphoblastic leukemia blast cells. These data identify PreProB-progenitors as the earliest B-lymphoid-restricted progenitor in human fetal life and suggest that this fetal-restricted committed B-progenitor might provide a permissive cellular context for prenatal B-progenitor leukemia initiation.


Assuntos
Feto/citologia , Linfopoese , Neprilisina/análise , Células Precursoras de Linfócitos B/citologia , Adulto , Medula Óssea/embriologia , Medula Óssea/metabolismo , Células Cultivadas , Feto/embriologia , Feto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Fígado/embriologia , Fígado/metabolismo , Neprilisina/genética , Células Precursoras de Linfócitos B/metabolismo , Transcriptoma
12.
Molecules ; 26(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34771052

RESUMO

Acute myeloid leukemia (AML) is the most aggressive type of blood cancer, and there is a continued need for new treatments that are well tolerated and improve long-term survival rates in patients. Induction of differentiation has emerged as a promising alternative to conventional cytotoxic chemotherapy, but known agents lack efficacy in genetically distinct patient populations. Previously, we established a phenotypic screen to identify small molecules that could stimulate differentiation in a range of AML cell lines. Utilising this strategy, a 1,5-dihydrobenzo[e][1,4]oxazepin-2(3H)-one hit compound was identified. Herein, we report the hit validation in vitro, structure-activity relationship (SAR) studies and the pharmacokinetic profiles for selected compounds.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Química Sintética , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Leucemia Mieloide Aguda , Estrutura Molecular , Relação Estrutura-Atividade
13.
Mol Cell ; 45(4): 447-58, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22264824

RESUMO

A substantial amount of organismal complexity is thought to be encoded by enhancers which specify the location, timing, and levels of gene expression. In mammals there are more enhancers than promoters which are distributed both between and within genes. Here we show that activated, intragenic enhancers frequently act as alternative tissue-specific promoters producing a class of abundant, spliced, multiexonic poly(A)(+) RNAs (meRNAs) which reflect the host gene's structure. meRNAs make a substantial and unanticipated contribution to the complexity of the transcriptome, appearing as alternative isoforms of the host gene. The low protein-coding potential of meRNAs suggests that many meRNAs may be byproducts of enhancer activation or underlie as-yet-unidentified RNA-encoded functions. Distinguishing between meRNAs and mRNAs will transform our interpretation of dynamic changes in transcription both at the level of individual genes and of the genome as a whole.


Assuntos
Elementos Facilitadores Genéticos/fisiologia , Regulação da Expressão Gênica , Regiões Promotoras Genéticas/fisiologia , Animais , Células Cultivadas , Células Eritroides , Camundongos , Poli A , RNA/química , RNA/fisiologia , Isoformas de RNA/química , RNA Mensageiro/química , RNA Mensageiro/fisiologia , Transcriptoma
14.
Cell Mol Life Sci ; 76(15): 2885-2898, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31098676

RESUMO

The mixed lineage leukemia (MLL) family of proteins became known initially for the leukemia link of its founding member. Over the decades, the MLL family has been recognized as an important class of histone H3 lysine 4 (H3K4) methyltransferases that control key aspects of normal cell physiology and development. Here, we provide a brief history of the discovery and study of this family of proteins. We address two main questions: why are there so many H3K4 methyltransferases in mammals; and is H3K4 methylation their key function?


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Animais , Histona-Lisina N-Metiltransferase/química , Histonas/metabolismo , Humanos , Metilação , Proteína de Leucina Linfoide-Mieloide/química , Proteína de Leucina Linfoide-Mieloide/classificação , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/classificação , Isoformas de Proteínas/metabolismo
15.
Biochim Biophys Acta Mol Cell Res ; 1865(1): 105-116, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28939057

RESUMO

The Cdc28 protein kinase subunits, Cks1 and Cks2, play dual roles in Cdk-substrate specificity and Cdk-independent protein degradation, in concert with the E3 ubiquitin ligase complexes SCFSkp2 and APCCdc20. Notable targets controlled by Cks include p27 and Cyclin A. Here, we demonstrate that Cks1 and Cks2 proteins interact with both the MllN and MllC subunits of Mll1 (Mixed-lineage leukaemia 1), and together, the Cks proteins define Mll1 levels throughout the cell cycle. Overexpression of CKS1B and CKS2 is observed in multiple human cancers, including various MLL-rearranged (MLLr) AML subtypes. To explore the importance of MLL-Fusion Protein regulation by CKS1/2, we used small molecule inhibitors (MLN4924 and C1) to modulate their protein degradation functions. These inhibitors specifically reduced the proliferation of MLLr cell lines compared to primary controls. Altogether, this study uncovers a novel regulatory pathway for MLL1, which may open a new therapeutic approach to MLLr leukaemia.


Assuntos
Quinases relacionadas a CDC2 e CDC28/fisiologia , Proteínas de Transporte/fisiologia , Proteínas de Ciclo Celular/fisiologia , Histona-Lisina N-Metiltransferase/genética , Leucemia/genética , Leucemia/patologia , Proteína de Leucina Linfoide-Mieloide/genética , Animais , Proteína Quinase CDC28 de Saccharomyces cerevisiae/fisiologia , Sobrevivência Celular/genética , Células Cultivadas , Embrião de Mamíferos , Regulação Leucêmica da Expressão Gênica , Rearranjo Gênico , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Camundongos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Transdução de Sinais/genética
16.
Blood ; 129(16): 2217-2223, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28179274

RESUMO

Chromosome translocations involving the mixed lineage leukemia (MLL) gene fuse it in frame with multiple partner genes creating novel fusion proteins (MLL-FPs) that cause aggressive acute leukemias in humans. Animal models of human disease are important for the exploration of underlying disease mechanisms as well as for testing novel therapeutic approaches. Patients carrying MLL-FPs have very few cooperating mutations, making MLL-FP driven leukemias ideal for animal modeling. The fact that the MLL-FP is the main driver mutation has allowed for a wide range of different experimental model systems designed to explore different aspects of MLL-FP leukemogenesis. In addition, MLL-FP driven acute myeloid leukemia (AML) in mice is often used as a general model for AML. This review provides an overview of different MLL-FP mouse model systems and discusses how well they have recapitulated aspects of the human disease as well as highlights the biological insights each model has provided into MLL-FP leukemogenesis. Many promising new drugs fail in the early stages of clinical trials. Lessons learned from past and present MLL-FP models may serve as a paradigm for designing more flexible and dynamic preclinical models for these as well as other acute leukemias.


Assuntos
Modelos Animais de Doenças , Histona-Lisina N-Metiltransferase/genética , Leucemia Mieloide Aguda/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Animais , Antineoplásicos/uso terapêutico , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Camundongos , Camundongos Transgênicos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Especificidade da Espécie , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
17.
Mol Cell ; 38(6): 853-63, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20541448

RESUMO

MLL1 fusion proteins activate HoxA9 gene expression and cause aggressive leukemias that respond poorly to treatment, but how they recognize and stably bind to HoxA9 is not clearly understood. In a systematic analysis of MLL1 domain recruitment activity, we identified an essential MLL1 recruitment domain that includes the CXXC domain and PHD fingers and is controlled by direct interactions with the PAF elongation complex and H3K4Me2/3. MLL1 fusion proteins lack the PHD fingers and require prebinding of a wild-type MLL1 complex and CXXC domain recognition of DNA for stable HoxA9 association. Together, these results suggest that specific recruitment of MLL1 requires multiple interactions and is a precondition for stable recruitment of MLL1 fusion proteins to HoxA9 in leukemogenesis. Since wild-type MLL1 and oncogenic MLL1 fusion proteins have overlapping yet distinct recruitment mechanisms, this creates a window of opportunity that could be exploited for the development of targeted therapies.


Assuntos
Proteínas de Homeodomínio/metabolismo , Leucemia/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Animais , Linhagem Celular , Loci Gênicos , Histona-Lisina N-Metiltransferase , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas Nucleares/metabolismo , Mutação Puntual , Estrutura Terciária de Proteína , Transporte Proteico , Fatores de Transcrição
18.
19.
PLoS Genet ; 8(6): e1002781, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22737091

RESUMO

We have developed an enhanced form of reduced representation bisulfite sequencing with extended genomic coverage, which resulted in greater capture of DNA methylation information of regions lying outside of traditional CpG islands. Applying this method to primary human bone marrow specimens from patients with Acute Myelogeneous Leukemia (AML), we demonstrated that genetically distinct AML subtypes display diametrically opposed DNA methylation patterns. As compared to normal controls, we observed widespread hypermethylation in IDH mutant AMLs, preferentially targeting promoter regions and CpG islands neighboring the transcription start sites of genes. In contrast, AMLs harboring translocations affecting the MLL gene displayed extensive loss of methylation of an almost mutually exclusive set of CpGs, which instead affected introns and distal intergenic CpG islands and shores. When analyzed in conjunction with gene expression profiles, it became apparent that these specific patterns of DNA methylation result in differing roles in gene expression regulation. However, despite this subtype-specific DNA methylation patterning, a much smaller set of CpG sites are consistently affected in both AML subtypes. Most CpG sites in this common core of aberrantly methylated CpGs were hypermethylated in both AML subtypes. Therefore, aberrant DNA methylation patterns in AML do not occur in a stereotypical manner but rather are highly specific and associated with specific driving genetic lesions.


Assuntos
Metilação de DNA/genética , Epigênese Genética/genética , Regulação Neoplásica da Expressão Gênica , Leucemia Mieloide Aguda/genética , Sequência de Bases , Ilhas de CpG/genética , Genoma Humano , Células HCT116 , Histona-Lisina N-Metiltransferase , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Dados de Sequência Molecular , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Regiões Promotoras Genéticas , Análise de Sequência de DNA
20.
Proc Natl Acad Sci U S A ; 108(38): 15751-6, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21896721

RESUMO

A number of acute leukemias arise from fusion of the mixed lineage leukemia 1 protein (MLL) N terminus to a variety of fusion partners that have been reported to reside in one or more poorly defined complexes linked to transcription elongation through interactions with the histone H3-K79 methyltransferase DOT1 and positive transcription elongation factor b (P-TEFb). Here we first identify natural complexes (purified through fusion partners AF9, AF4, and ELL) with overlapping components, different elongation activities, and different cofactor associations that suggest dynamic interactions. Then, through reconstitution of defined, functionally active minimal complexes, we identify stable subcomplexes that, through newly defined protein-protein interactions, form distinct higher order complexes. These definitive analyses show, for example, that (i) through direct interactions with AF9 and cyclinT1, family members AF4 and AFF4 independently mediate association of P-TEFb with AF9, (ii) P-TEFb, through direct interactions, provides the link for association of ELL and ELL-associated factors 1 and 2 (EAF1 and EAF2) with AF4, and (iii) in the absence of other factors, DOT1 forms a stable complex with AF9 and does not interact with AF9•AF4•P-TEFb complexes. Finally, we show the importance of defined higher order complex formation in MLL-AF9-mediated transcriptional up-regulation and cell immortalization potential in vivo. Thus, our study provides direct mechanistic insight into the role of fusion partners in MLL fusion-mediated leukemogenesis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Metiltransferases/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , Animais , Sítios de Ligação/genética , Linhagem Celular , Transformação Celular Neoplásica , Células Cultivadas , Proteínas de Ligação a DNA/genética , Células HEK293 , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Immunoblotting , Leucemia/genética , Leucemia/metabolismo , Leucemia/patologia , Metiltransferases/genética , Camundongos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas Nucleares/genética , Proteínas de Fusão Oncogênica/genética , Fator B de Elongação Transcricional Positiva/genética , Ligação Proteica , Spodoptera
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA