Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Nat Prod ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961616

RESUMO

Transient receptor potential vanilloid subtype 3 (TRPV3) is an ion channel implicated in skin physiology and itch. TRPV3 inhibitors can present a novel strategy for combating debilitating itch conditions, and medicinal plants are a natural pool of such compounds. Here, we report the isolation of a TRPV3-inhibiting compound from Andrographis paniculata, a medicinal plant with anti-inflammatory properties whose bioactive components are poorly characterized in terms of molecular targets. Using 1H and 13C NMR and high-resolution mass spectrometry, the compound was identified as a labdane-type diterpenoid, 14-deoxy-11,12-didehydroandrographolide (ddA). The activity of the compound was evaluated by fluorescent calcium assay and manual whole-cell patch-clamp technique. ddA inhibited human TRPV3 in stably expressing CHO and HaCaT keratinocytes, acting selectively among other TRP channels implicated in itch and inflammation and not showing toxicity to HaCaT cells. Antipruritic effects of the compound were evaluated in scratching behavior models on ICR mice. ddA suppressed itch induced by the TRPV3 activator carvacrol. Additionally, ddA potently suppressed histamine-induced itch with efficacy comparable to loratadine, a clinically used antihistamine drug. These results suggest the potential of ddA as a possible safe and efficacious alternative for antipruritic therapy.

2.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474299

RESUMO

NanoFAST is the smallest fluorogen-activating protein, consisting of only 98 amino acids, used as a genetically encoded fluorescent tag. Previously, only a single fluorogen with an orange color was revealed for this protein. In the present paper, using rational mutagenesis and in vitro screening of fluorogens libraries, we expanded the color palette of this tag. We discovered that E46Q is one of the key substitutions enabling the range of possible fluorogens to be expanded. The introduction of this and several other substitutions has made it possible to use not only orange but also red and green fluorogens with the modified protein.


Assuntos
Corantes Fluorescentes , Proteínas , Corantes Fluorescentes/química
3.
J Biol Chem ; 298(11): 102467, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36087839

RESUMO

Among voltage-gated potassium channel (KV) isoforms, KV1.6 is one of the most widespread in the nervous system. However, there are little data concerning its physiological significance, in part due to the scarcity of specific ligands. The known high-affinity ligands of KV1.6 lack selectivity, and conversely, its selective ligands show low affinity. Here, we present a designer peptide with both high affinity and selectivity to KV1.6. Previously, we have demonstrated that KV isoform-selective peptides can be constructed based on the simplistic α-hairpinin scaffold, and we obtained a number of artificial Tk-hefu peptides showing selective blockage of KV1.3 in the submicromolar range. We have now proposed amino acid substitutions to enhance their activity. As a result, we have been able to produce Tk-hefu-11 that shows an EC50 of ≈70 nM against KV1.3. Quite surprisingly, Tk-hefu-11 turns out to block KV1.6 with even higher potency, presenting an EC50 of ≈10 nM. Furthermore, we have solved the peptide structure and used molecular dynamics to investigate the determinants of selective interactions between artificial α-hairpinins and KV channels to explain the dramatic increase in KV1.6 affinity. Since KV1.3 is not highly expressed in the nervous system, we hope that Tk-hefu-11 will be useful in studies of KV1.6 and its functions.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Sequência de Aminoácidos , Bloqueadores dos Canais de Potássio/química , Peptídeos/química , Ligantes , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Canal de Potássio Kv1.3/genética , Canal de Potássio Kv1.3/metabolismo , Canal de Potássio Kv1.1/metabolismo , Canal de Potássio Kv1.2/metabolismo , Canal de Potássio Kv1.5/metabolismo
4.
J Biomol NMR ; 77(1-2): 15-24, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36451032

RESUMO

Membrane proteins are one of the keystone objects in molecular biology, but their structural studies often require an extensive search for an appropriate membrane-like environment and an efficient refolding protocol for a recombinant protein. Isotropic bicelles are a convenient membrane mimetic used in structural studies of membrane proteins. Helical membrane domains are often transferred into bicelles from trifluoroethanol-water mixtures. However, the protocols for such a refolding are empirical and the process itself is still not understood in detail. In search of the optimal refolding approaches for helical membrane proteins, we studied here how membrane proteins, lipids, and detergents interact with each other at various trifluoroethanol-water ratios. Using high-resolution NMR spectroscopy and dynamic light scattering, we determined the key states of the listed compounds in the trifluoroethanol/water mixture, found the factors that could be critical for the efficiency of refolding, and proposed several most optimal protocols. These protocols were developed on the transmembrane domain of neurotrophin receptor TrkA and tested on two model helical membrane domains-transmembrane of Toll-like receptor TLR9 and voltage-sensing domain of a potassium channel KvAP.


Assuntos
Trifluoretanol , Água , Ressonância Magnética Nuclear Biomolecular , Proteínas de Membrana , Lipídeos/química
5.
Int J Mol Sci ; 24(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37834312

RESUMO

Integral membrane proteins are important components of a cell. Their structural and functional studies require production of milligram amounts of proteins, which nowadays is not a routine process. Cell-free protein synthesis is a prospective approach to resolve this task. However, there are few known membrane mimetics that can be used to synthesize active membrane proteins in high amounts. Here, we present the application of commercially available "Facade" detergents for the production of active rhodopsin. We show that the yield of active protein in lipid bicelles containing Facade-EM, Facade-TEM, and Facade-EPC is several times higher than in the case of conventional bicelles with CHAPS and DHPC and is comparable to the yield in the presence of lipid-protein nanodiscs. Moreover, the effects of the lipid-to-detergent ratio, concentration of detergent in the feeding mixture, and lipid composition of the bicelles on the total, soluble, and active protein yields are discussed. We show that Facade-based bicelles represent a prospective membrane mimetic, available for the production of membrane proteins in a cell-free system.


Assuntos
Bicamadas Lipídicas , Proteínas de Membrana , Proteínas de Membrana/química , Bicamadas Lipídicas/química , Detergentes/química , Sistema Livre de Células , Micelas
6.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175667

RESUMO

In this work, we showed that the well-known NanoLuc luciferase can act as a fluorogen activating protein for various arylidene-imidazolones structurally similar to the Kaede protein chromophore. We showed that such compounds can be used as fluorescent sensors for this protein and can also be used in pairs with it in fluorescent microscopy as a genetically encoded tag.


Assuntos
Corantes Fluorescentes , Corantes Fluorescentes/metabolismo , Luciferases/genética , Microscopia de Fluorescência
7.
Int J Mol Sci ; 24(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298416

RESUMO

Biochemistry of bioluminescence of the marine parchment tubeworm Chaetopterus has been in research focus for over a century; however, the results obtained by various groups contradict each other. Here, we report the isolation and structural elucidation of three compounds from Chaetomorpha linum algae, which demonstrate bioluminescence activity with Chaetopterus luciferase in the presence of Fe2+ ions. These compounds are derivatives of polyunsaturated fatty acid peroxides. We have also obtained their structural analogues and demonstrated their activity in the bioluminescence reaction, thus confirming the broad substrate specificity of the luciferase.


Assuntos
Peróxidos , Poliquetos , Animais , Luciferases/química , Medições Luminescentes
8.
J Biol Chem ; 297(2): 100926, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34216618

RESUMO

The neurotrophin receptors p75 and tyrosine protein kinase receptor A (TrkA) play important roles in the development and survival of the nervous system. Biochemical data suggest that p75 and TrkA reciprocally regulate the activities of each other. For instance, p75 is able to regulate the response of TrkA to lower concentrations of nerve growth factor (NGF), and TrkA promotes shedding of the extracellular domain of p75 by α-secretases in a ligand-dependent manner. The current model suggests that p75 and TrkA are regulated by means of a direct physical interaction; however, the nature of such interaction has been elusive thus far. Here, using NMR in micelles, multiscale molecular dynamics, FRET, and functional studies, we identified and characterized the direct interaction between TrkA and p75 through their respective transmembrane domains (TMDs). Molecular dynamics of p75-TMD mutants suggests that although the interaction between TrkA and p75 TMDs is maintained upon mutation, a specific protein interface is required to facilitate TrkA active homodimerization in the presence of NGF. The same mutations in the TMD protein interface of p75 reduced the activation of TrkA by NGF as well as reducing cell differentiation. In summary, we provide a structural model of the p75-TrkA receptor complex necessary for neuronal development stabilized by TMD interactions.


Assuntos
Receptor de Fator de Crescimento Neural , Receptor trkA , Animais , Diferenciação Celular , Neurogênese , Células PC12 , Ligação Proteica , Domínios Proteicos , Ratos
9.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36232662

RESUMO

NanoFAST is a fluorogen-activating protein and can be considered one of the smallest encodable fluorescent tags. Being a shortened variant of another fluorescent tag, FAST, nanoFAST works nicely only with one out of all known FAST ligands. This substantially limits the applicability of this protein. To find the reason for such a behavior, we investigated the spatial structure and dynamics of nanoFAST, both in the apo state and in the complex with its fluorogen molecule, using the solution NMR spectroscopy. We showed that the truncation of FAST did not affect the structure of the remaining part of the protein. Our data suggest that the deleted N-terminus of FAST destabilizes the C-terminal domain in the apo state. While it does not contact the fluorogen directly, it serves as a free energy reservoir that enhances the ligand binding propensity of the protein. The structure of nanoFAST/HBR-DOM2 complex reveals the atomistic details of nanoFAST interactions with the rhodanine-based ligands and explains the ligand specificity. NanoFAST selects ligands with the lowest dissociation constants, 2,5-disubstituted 4-hydroxybenzyldienerhodainines, which allow the non-canonical intermolecular CH-N hydrogen bonding and provide the optimal packing of the ligand within the hydrophobic cavity of the protein.


Assuntos
Rodanina , Ligação de Hidrogênio , Ligantes , Espectroscopia de Ressonância Magnética , Proteínas
10.
Molecules ; 27(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36235252

RESUMO

We describe azophenylindane based molecular motors (aphin-switches) which have two different rotamers of trans-configuration and four different rotamers of cis-configuration. The behaviors of these motors were investigated both experimentally and computationally. The conversion of aphin-switch does not yield single isomer but a mixture of these. Although the trans to cis conversion leads to the increase of the system entropy some of the cis-rotamers can directly convert to each other while others should convert via trans-configuration. The motion of aphin-switches resembles the work of a mixing machine with indane group serving as a base and phenol group serving as a beater. The aphin-switches presented herein may provide a basis for promising applications in advanced biological systems or particularly in cases where on demand disordering of molecular packing has value, such as lipid bilayers.


Assuntos
Indanos , Bicamadas Lipídicas , Isomerismo , Fenóis
11.
Molecules ; 27(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364369

RESUMO

The synthesis of the products of the 1,3-propanesultone ring opening during its interaction with amides of pyridinecarboxylic acids has been carried out. The dependence of the yield of the reaction products on the position (ortho-, meta-, para-) of the substituent in the heteroaromatic fragment and temperature condition was revealed. In contrast to the meta- and para-substituted substrates, the reaction involving ortho-derivatives at the boiling point of methanol unexpectedly led to the formation of a salt. On the basis of spectroscopic, X-Ray, and quantum-chemical calculation data, a model of the transition-state, as well as a mechanism for this alkylation reaction of pyridine carboxamides with sultone were proposed in order to explain the higher yields obtained with the nicotinamide and its N-methyl analog compared to ortho or meta parents. Based on the analysis of ESP maps, the positions of the binding sites of reagents with a potential complexing agent in space were determined. The in silico evaluation of possible biological activity showed that the synthetized compounds revealed some promising pharmacological effects and low acute toxicity.


Assuntos
Amidas , Piridinas , Piridinas/química , Amidas/química , Betaína , Alquilação
12.
J Biol Chem ; 295(1): 275-286, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31801826

RESUMO

Tropomyosin-receptor kinases (TRKs) are essential for the development of the nervous system. The molecular mechanism of TRKA activation by its ligand nerve growth factor (NGF) is still unsolved. Recent results indicate that at endogenous levels most of TRKA is in a monomer-dimer equilibrium and that the binding of NGF induces an increase of the dimeric and oligomeric forms of this receptor. An unsolved issue is the role of the TRKA transmembrane domain (TMD) in the dimerization of TRKA and the structural details of the TMD in the active dimer receptor. Here, we found that the TRKA-TMD can form dimers, identified the structural determinants of the dimer interface in the active receptor, and validated this interface through site-directed mutagenesis together with functional and cell differentiation studies. Using in vivo cross-linking, we found that the extracellular juxtamembrane region is reordered after ligand binding. Replacement of some residues in the juxtamembrane region with cysteine resulted in ligand-independent active dimers and revealed the preferred dimer interface. Moreover, insertion of leucine residues into the TMD helix induced a ligand-independent TRKA activation, suggesting that a rotation of the TMD dimers underlies NGF-induced TRKA activation. Altogether, our findings indicate that the transmembrane and juxtamembrane regions of TRKA play key roles in its dimerization and activation by NGF.


Assuntos
Simulação de Dinâmica Molecular , Fator de Crescimento Neural/metabolismo , Multimerização Proteica , Receptor trkA/química , Substituição de Aminoácidos , Animais , Sítios de Ligação , Diferenciação Celular , Células HeLa , Humanos , Células PC12 , Ligação Proteica , Ratos , Receptor trkA/genética , Receptor trkA/metabolismo
13.
Proteins ; 2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33713480

RESUMO

Old world scorpions produce an abundance of toxins called α-NaTx, which interfere with the fast inactivation of voltage-gated sodium channels. Their selectivity to channels of mammals or insects depends on a part of toxin named the specificity module. We report here the spatial structure of a major and broadly active toxin MeuNaTxα-1 from the venom of Mesobuthus eupeus. Notably, its specificity module is markedly different from other α-NaTx with known 3D structure. Close inspection shows that its conformation is a result of an interplay between protein motifs such as the nest and niche, which eventually shape α-NaTx structural diversity.

14.
Protein Expr Purif ; 181: 105832, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33516826

RESUMO

T7 expression system is an extremely popular approach for the recombinant protein production in Escherichia coli for structural and functional studies and therapeutic applications. There are many useful tools and successful techniques that allow expressing the desired protein in this system. However, high yield of soluble protein often requires a systematic optimization of a wide range of cell cultivation parameters. Here we analyze the effect of three key cultivation parameters - chemical inductor, temperature and time of post-induction culturing on the expression level of TLR1 intracellular TIR domain in a soluble form. In addition, the influence of Triton X-100 detergent on the protein solubility during the cell lysis was investigated. We show that a high expression level of the correctly folded soluble protein can be obtained under different combinations of cultivation parameters.


Assuntos
Escherichia coli , Expressão Gênica , Receptor 1 Toll-Like , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Domínios Proteicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Receptor 1 Toll-Like/biossíntese , Receptor 1 Toll-Like/genética
15.
J Biol Chem ; 294(48): 18349-18359, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31533989

RESUMO

Tk-hefu is an artificial peptide designed based on the α-hairpinin scaffold, which selectively blocks voltage-gated potassium channels Kv1.3. Here we present its spatial structure resolved by NMR spectroscopy and analyze its interaction with channels using computer modeling. We apply protein surface topography to suggest mutations and increase Tk-hefu affinity to the Kv1.3 channel isoform. We redesign the functional surface of Tk-hefu to better match the respective surface of the channel pore vestibule. The resulting peptide Tk-hefu-2 retains Kv1.3 selectivity and displays ∼15 times greater activity compared with Tk-hefu. We verify the mode of Tk-hefu-2 binding to the channel outer vestibule experimentally by site-directed mutagenesis. We argue that scaffold engineering aided by protein surface topography represents a reliable tool for design and optimization of specific ion channel ligands.


Assuntos
Canal de Potássio Kv1.3/química , Peptídeos/química , Bloqueadores dos Canais de Potássio/química , Proteínas/química , Sequência de Aminoácidos , Animais , Humanos , Canal de Potássio Kv1.3/metabolismo , Ligantes , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Simulação de Dinâmica Molecular , Mutação , Peptídeos/genética , Peptídeos/metabolismo , Bloqueadores dos Canais de Potássio/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas/metabolismo , Propriedades de Superfície
16.
Soft Matter ; 16(5): 1333-1341, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31934706

RESUMO

Archaea are prokaryotic microorganisms famous for their ability to adapt to extreme environments, including low and high temperatures. Archaeal lipids often are macrocycles with two polar heads and a hydrophobic core that contains methyl groups and in-line cycles. Here we present the design of novel general-purpose surfactants that have inherited features of archaeal lipids. These are C12 and C14 carboxylic acids containing in-line cyclopentanes. The cyclopentanes disturb the chain packing, which results in remarkable expansion of the operational range of the surfactant into the low-temperature region. We report synthesis and properties of these novel archaea-like surfactants and details of their chain packing derived from thermodynamics model predictions, molecular dynamics simulations, and experimental data on CMC and Krafft points.


Assuntos
Archaea/metabolismo , Ciclopentanos/química , Tensoativos/química , Archaea/química , Ciclopentanos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Metabolismo dos Lipídeos , Lipídeos/química , Simulação de Dinâmica Molecular , Termodinâmica
17.
Proteins ; 87(9): 786-790, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31033000

RESUMO

Structural study of any single-pass membrane protein is both an important and challenging task. In this report, we present the structure of a neurotrophin receptor-alike death-domain protein. The structure and dynamics of the protein was investigated by conventional nuclear magnetic resonance techniques in the solution of phospholipid bicelles. The receptor contains two folded regions-α-helical transmembrane domain and globular C-terminal death domain with more than 50% of the rest of backbone being disordered. This is the first structure of a full-length single-pass membrane receptor-alike protein solved by the single method.


Assuntos
Proteínas de Membrana/química , Fosfolipídeos/química , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/metabolismo , Fosfolipídeos/metabolismo
18.
Proteins ; 86(10): 1117-1122, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30007037

RESUMO

Sodium channel alpha-toxins from scorpion venom (α-NaTx) inhibit the inactivation of voltage-gated sodium channels. We used solution NMR to investigate the structure of BeM9 toxin from Mesobuthus eupeus scorpion, a prototype α-NaTx classified as an "α-like" toxin due to its wide spectrum of activity on insect and mammalian channels. We identified a new motif that we named "arginine hand," whereby arginine side chain forms several hydrogen bonds with main chain atoms. The arginine hand was found in the "specificity module," a part of the molecule that dictates toxin selectivity; and just single arginine-to-lysine point mutation drastically changed BeM9 selectivity profile.


Assuntos
Arginina/química , Proteínas de Artrópodes/química , Neurotoxinas/química , Venenos de Escorpião/química , Escorpiões/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Modelos Moleculares , Conformação Proteica , Alinhamento de Sequência
19.
Langmuir ; 34(11): 3426-3437, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29486112

RESUMO

Isotropic phospholipid bicelles are one of the most prospective membrane mimetics for the structural studies of membrane proteins in solution. Recent works provided an almost full set of data regarding the properties of isotropic bicelles; however, one major aspect of their behavior is still under consideration: the possible mixing between the lipid and detergent in the bilayer area. This problem may be resolved by studying the lipid phase transitions in bicelle particles. In the present work, we investigate two effects: phase transitions of bilayer lipids and temperature-induced growth of isotropic bicelles using the NMR spectroscopy. We propose an approach to study the phase transitions in isotropic bicelles based on the properties of 31P NMR spectra of bilayer-forming lipids. We show that phase transitions in small bicelles are "fractional", particles with the liquid-crystalline and gel bilayers coexist in solution at certain temperatures. We study the effects of lipid fatty chain type and demonstrate that the behavior of various lipids in bilayers is reproduced in the isotropic bicelles. We show that the temperature-induced growth of isotropic bicelles is not related directly to the phase transition but is the result of the reversible fusion of bicelle particles. In accordance with our data, rim detergents also have an impact on phase transitions: detergents that resist the temperature-induced growth provide the narrowest and most expressed transitions at higher temperatures. We demonstrate clearly that phase transitions take place even in the smallest bicelles that are applicable for structural studies of membrane proteins by solution NMR spectroscopy. This last finding, together with other data draws a thick line under the long-lasting argument about the relevance of small isotropic bicelles. We show with certainty that the small bicelles can reproduce the most fundamental property of lipid membranes: the ability to undergo phase transition.

20.
Molecules ; 23(11)2018 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-30373232

RESUMO

Soil fungi are known to contain a rich variety of defense metabolites that allow them to compete with other organisms (fungi, bacteria, nematodes, and insects) and help them occupy more preferential areas at the expense of effective antagonism. These compounds possess antibiotic activity towards a wide range of other microbes, particularly fungi that belong to different taxonomical units. These compounds include peptaibols, which are non-ribosomal synthesized polypeptides containing non-standard amino acid residues (alpha-aminoisobutyric acid mandatory) and some posttranslational modifications. We isolated a novel antibiotic peptide from the culture medium of Emericellopsis alkalina, an alkalophilic strain. This peptide, called emericellipsin A, exhibited a strong antifungal effect against the yeast Candida albicans, the mold fungus Aspergillus niger, and human pathogen clinical isolates. It also exhibited antimicrobial activity against some Gram-positive and Gram-negative bacteria. Additionally, emericellipsin A showed a significant cytotoxic effect and was highly active against Hep G2 and HeLa tumor cell lines. We used NMR spectroscopy to reveal that this peptaibol is nine amino acid residues long and contains non-standard amino acids. The mode of molecular action of emericellipsin A is most likely associated with its effects on the membranes of cells. Emericellipsin A is rather short peptaibol and could be useful for the development of antifungal, antibacterial, or anti-tumor remedies.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Ascomicetos/química , Anti-Infecciosos/isolamento & purificação , Antineoplásicos/isolamento & purificação , Ascomicetos/metabolismo , Bactérias/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Fungos/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA