Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 25(1): 88-101, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38012415

RESUMO

Few cancers can be targeted efficiently by engineered T cell strategies. Here, we show that γδ T cell antigen receptor (γδ TCR)-mediated cancer metabolome targeting can be combined with targeting of cancer-associated stress antigens (such as NKG2D ligands or CD277) through the addition of chimeric co-receptors. This strategy overcomes suboptimal γ9δ2 TCR engagement of αß T cells engineered to express a defined γδ TCR (TEGs) and improves serial killing, proliferation and persistence of TEGs. In vivo, the NKG2D-CD28WT chimera enabled control only of liquid tumors, whereas the NKG2D-4-1BBCD28TM chimera prolonged persistence of TEGs and improved control of liquid and solid tumors. The CD277-targeting chimera (103-4-1BB) was the most optimal co-stimulation format, eradicating both liquid and solid tumors. Single-cell transcriptomic analysis revealed that NKG2D-4-1BBCD28TM and 103-4-1BB chimeras reprogram TEGs through NF-κB. Owing to competition with naturally expressed NKG2D in CD8+ TEGs, the NKG2D-4-1BBCD28TM chimera mainly skewed CD4+ TEGs toward adhesion, proliferation, cytotoxicity and less exhausted signatures, whereas the 103-4-1BB chimera additionally shaped the CD8+ subset toward a proliferative state.


Assuntos
Neoplasias , Linfócitos T , Humanos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Perfilação da Expressão Gênica
2.
Nat Immunol ; 25(7): 1207-1217, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38802512

RESUMO

The contribution of γδ T cells to immune responses is associated with rapid secretion of interferon-γ (IFN-γ). Here, we show a perinatal thymic wave of innate IFN-γ-producing γδ T cells that express CD8αß heterodimers and expand in preclinical models of infection and cancer. Optimal CD8αß+ γδ T cell development is directed by low T cell receptor signaling and through provision of interleukin (IL)-4 and IL-7. This population is pathologically relevant as overactive, or constitutive, IL-7R-STAT5B signaling promotes a supraphysiological accumulation of CD8αß+ γδ T cells in the thymus and peripheral lymphoid organs in two mouse models of T cell neoplasia. Likewise, CD8αß+ γδ T cells define a distinct subset of human T cell acute lymphoblastic leukemia pediatric patients. This work characterizes the normal and malignant development of CD8αß+ γδ T cells that are enriched in early life and contribute to innate IFN-γ responses to infection and cancer.


Assuntos
Imunidade Inata , Interferon gama , Receptores de Antígenos de Linfócitos T gama-delta , Receptores de Interleucina-7 , Fator de Transcrição STAT5 , Timo , Animais , Interferon gama/metabolismo , Interferon gama/imunologia , Camundongos , Humanos , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Timo/imunologia , Receptores de Interleucina-7/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/imunologia , Camundongos Endogâmicos C57BL , Linfócitos T CD8-Positivos/imunologia , Camundongos Knockout , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Antígenos CD8/metabolismo , Feminino , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Interleucina-7/metabolismo
3.
Nat Immunol ; 24(12): 2135-2149, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37932456

RESUMO

Current US Food and Drug Administration-approved chimeric antigen receptor (CAR) T cells harbor the T cell receptor (TCR)-derived ζ chain as an intracellular activation domain in addition to costimulatory domains. The functionality in a CAR format of the other chains of the TCR complex, namely CD3δ, CD3ε and CD3γ, instead of ζ, remains unknown. In the present study, we have systematically engineered new CD3 CARs, each containing only one of the CD3 intracellular domains. We found that CARs containing CD3δ, CD3ε or CD3γ cytoplasmic tails outperformed the conventional ζ CAR T cells in vivo. Transcriptomic and proteomic analysis revealed differences in activation potential, metabolism and stimulation-induced T cell dysfunctionality that mechanistically explain the enhanced anti-tumor performance. Furthermore, dimerization of the CARs improved their overall functionality. Using these CARs as minimalistic and synthetic surrogate TCRs, we have identified the phosphatase SHP-1 as a new interaction partner of CD3δ that binds the CD3δ-ITAM on phosphorylation of its C-terminal tyrosine. SHP-1 attenuates and restrains activation signals and might thus prevent exhaustion and dysfunction. These new insights into T cell activation could promote the rational redesign of synthetic antigen receptors to improve cancer immunotherapy.


Assuntos
Proteômica , Receptores de Antígenos de Linfócitos T , Complexo CD3 , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Membrana Celular/metabolismo , Ativação Linfocitária , Linfócitos T
4.
Nat Immunol ; 21(8): 902-913, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32690949

RESUMO

Initiation of T cell antigen receptor (TCR) signaling involves phosphorylation of CD3 cytoplasmic tails by the tyrosine kinase Lck. How Lck is recruited to the TCR to initiate signaling is not well known. We report a previously unknown binding motif in the CD3ε cytoplasmic tail that interacts in a noncanonical mode with the Lck SH3 domain: the receptor kinase (RK) motif. The RK motif is accessible only upon TCR ligation, demonstrating how ligand binding leads to Lck recruitment. Binding of the Lck SH3 domain to the exposed RK motif resulted in local augmentation of Lck activity, CD3 phosphorylation, T cell activation and thymocyte development. Introducing the RK motif into a well-characterized 41BB-based chimeric antigen receptor enhanced its antitumor function in vitro and in vivo. Our findings underscore how a better understanding of the functioning of the TCR might promote rational improvement of chimeric antigen receptor design for the treatment of cancer.


Assuntos
Complexo CD3/metabolismo , Ativação Linfocitária/imunologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Motivos de Aminoácidos/imunologia , Animais , Complexo CD3/imunologia , Humanos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/imunologia , Camundongos , Receptores de Antígenos de Linfócitos T/imunologia
5.
Nat Immunol ; 18(10): 1150-1159, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28805811

RESUMO

Caveolin-1 (Cav1) regulates the nanoscale organization and compartmentalization of the plasma membrane. Here we found that Cav1 controlled the distribution of nanoclusters of isotype-specific B cell antigen receptors (BCRs) on the surface of B cells. In mature B cells stimulated with antigen, the immunoglobulin M BCR (IgM-BCR) gained access to lipid domains enriched for GM1 glycolipids, by a process that was dependent on the phosphorylation of Cav1 by the Src family of kinases. Antigen-induced reorganization of nanoclusters of IgM-BCRs and IgD-BCRs regulated BCR signaling in vivo. In immature Cav1-deficient B cells, altered nanoscale organization of IgM-BCRs resulted in a failure of receptor editing and a skewed repertoire of B cells expressing immunoglobulin-µ heavy chains with hallmarks of poly- and auto-reactivity, which ultimately led to autoimmunity in mice. Thus, Cav1 emerges as a cell-intrinsic regulator that prevents B cell-induced autoimmunity by means of its role in plasma-membrane organization.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Caveolina 1/metabolismo , Tolerância Imunológica , Receptores de Antígenos de Linfócitos B/metabolismo , Animais , Autoimunidade/genética , Autoimunidade/imunologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Caveolina 1/genética , Expressão Gênica , Tolerância Imunológica/genética , Imunoglobulina D/imunologia , Imunoglobulina D/metabolismo , Imunoglobulina M/imunologia , Imunoglobulina M/metabolismo , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fosforilação , Ligação Proteica , Receptores de Antígenos de Linfócitos B/genética
6.
Nat Immunol ; 18(8): 911-920, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28628091

RESUMO

Developing pre-B cells in the bone marrow alternate between proliferation and differentiation phases. We found that protein arginine methyl transferase 1 (PRMT1) and B cell translocation gene 2 (BTG2) are critical components of the pre-B cell differentiation program. The BTG2-PRMT1 module induced a cell-cycle arrest of pre-B cells that was accompanied by re-expression of Rag1 and Rag2 and the onset of immunoglobulin light chain gene rearrangements. We found that PRMT1 methylated cyclin-dependent kinase 4 (CDK4), thereby preventing the formation of a CDK4-Cyclin-D3 complex and cell cycle progression. Moreover, BTG2 in concert with PRMT1 efficiently blocked the proliferation of BCR-ABL1-transformed pre-B cells in vitro and in vivo. Our results identify a key molecular mechanism by which the BTG2-PRMT1 module regulates pre-B cell differentiation and inhibits pre-B cell leukemogenesis.


Assuntos
Proliferação de Células/genética , Ciclina D3/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Proteínas Imediatamente Precoces/genética , Linfopoese/genética , Células Precursoras de Linfócitos B/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteínas Supressoras de Tumor/genética , Animais , Pontos de Checagem do Ciclo Celular , Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Rearranjo Gênico do Linfócito B/genética , Genes abl/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Cadeias Leves de Imunoglobulina/genética , Espectrometria de Massas , Camundongos , Células Precursoras de Linfócitos B/citologia , Proteína-Arginina N-Metiltransferases/metabolismo , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Supressoras de Tumor/metabolismo
8.
Cell ; 146(1): 148-63, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21729786

RESUMO

Mechanotransduction is a key determinant of tissue homeostasis and tumor progression. It is driven by intercellular adhesions, cell contractility, and forces generated within the microenvironment and is dependent on extracellular matrix composition, organization, and compliance. We show that caveolin-1 (Cav1) favors cell elongation in three-dimensional cultures and promotes Rho- and force-dependent contraction, matrix alignment, and microenvironment stiffening through regulation of p190RhoGAP. In turn, microenvironment remodeling by Cav1 fibroblasts forces cell elongation. Cav1-deficient mice have disorganized stromal tissue architecture. Stroma associated with human carcinomas and melanoma metastases is enriched in Cav1-expressing carcinoma-associated fibroblasts (CAFs). Cav1 expression in breast CAFs correlates with low survival, and Cav1 depletion in CAFs decreases CAF contractility. Consistently, fibroblast expression of Cav1, through p190RhoGAP regulation, favors directional migration and invasiveness of carcinoma cells in vitro. In vivo, stromal Cav1 remodels peri- and intratumoral microenvironments to facilitate tumor invasion, correlating with increased metastatic potency. Thus, Cav1 modulates tissue responses through force-dependent architectural regulation of the microenvironment.


Assuntos
Caveolina 1/metabolismo , Metástase Neoplásica/patologia , Neoplasias/patologia , Animais , Movimento Celular , Fibroblastos/patologia , Humanos , Melanoma/patologia , Camundongos , Camundongos Knockout
9.
Immunity ; 44(5): 1091-101, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27192576

RESUMO

Signaling through the T cell receptor (TCR) controls adaptive immune responses. Antigen binding to TCRαß transmits signals through the plasma membrane to induce phosphorylation of the CD3 cytoplasmic tails by incompletely understood mechanisms. Here we show that cholesterol bound to the TCRß transmembrane region keeps the TCR in a resting, inactive conformation that cannot be phosphorylated by active kinases. Only TCRs that spontaneously detached from cholesterol could switch to the active conformation (termed primed TCRs) and then be phosphorylated. Indeed, by modulating cholesterol binding genetically or enzymatically, we could switch the TCR between the resting and primed states. The active conformation was stabilized by binding to peptide-MHC, which thus controlled TCR signaling. These data are explained by a model of reciprocal allosteric regulation of TCR phosphorylation by cholesterol and ligand binding. Our results provide both a molecular mechanism and a conceptual framework for how lipid-receptor interactions regulate signal transduction.


Assuntos
Imunidade Adaptativa , Colesterol/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Linfócitos T/imunologia , Regulação Alostérica , Antígenos/imunologia , Antígenos/metabolismo , Antígenos de Histocompatibilidade/metabolismo , Humanos , Células Jurkat , Ativação Linfocitária , Modelos Imunológicos , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Fosforilação , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Transdução de Sinais
10.
J Clin Immunol ; 44(1): 4, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38112969

RESUMO

Mutations affecting T-cell receptor (TCR) signaling typically cause combined immunodeficiency (CID) due to varying degrees of disturbed T-cell homeostasis and differentiation. Here, we describe two cousins with CID due to a novel nonsense mutation in LCK and investigate the effect of this novel nonsense mutation on TCR signaling, T-cell function, and differentiation. Patients underwent clinical, genetic, and immunological investigations. The effect was addressed in primary cells and LCK-deficient T-cell lines after expression of mutated LCK. RESULTS: Both patients primarily presented with infections in early infancy. The LCK mutation led to reduced expression of a truncated LCK protein lacking a substantial part of the kinase domain and two critical regulatory tyrosine residues. T cells were oligoclonal, and especially naïve CD4 and CD8 T-cell counts were reduced, but regulatory and memory including circulating follicular helper T cells were less severely affected. A diagnostic hallmark of this immunodeficiency is the reduced surface expression of CD4. Despite severely impaired TCR signaling mTOR activation was partially preserved in patients' T cells. LCK-deficient T-cell lines reconstituted with mutant LCK corroborated partially preserved signaling. Despite detectable differentiation of memory and effector T cells, their function was severely disturbed. NK cell cytotoxicity was unaffected. Residual TCR signaling in LCK deficiency allows for reduced, but detectable T-cell differentiation, while T-cell function is severely disturbed. Our findings expand the previous report on one single patient on the central role of LCK in human T-cell development and function.


Assuntos
Síndromes de Imunodeficiência , Doenças da Imunodeficiência Primária , Humanos , Códon sem Sentido , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/química , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Fosforilação , Doenças da Imunodeficiência Primária/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais
11.
Eur J Immunol ; 52(9): 1396-1405, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35443081

RESUMO

B-cell tolerance to self-antigen is an active process that requires the temporal and spatial integration of signals of defined intensity. In common variable immune deficiency disorders, CTLA-4 deficiency, autoimmune lymphoproliferative syndrome, or in collagen VII deficiency, genetic defects in molecules regulating development, activation, maturation, and ECM composition alter the generation of B cells, resulting in immunodeficiency. Paradoxically, at the same time, the defective immune processes favor autoantibody production and immunopathology through impaired establishment of tolerance. The development of systemic autoimmunity in the framework of defective BCR signaling is relatively unusual in genetic mouse models. In sharp contrast, such reduced signaling in humans is clearly linked to pathological autoimmunity. The molecular mechanisms by which tolerance is broken in these settings are only starting to be explored resulting in novel therapeutic interventions. For instance, in CTLA-4 deficiency, homeostasis can be restored by CTLA-4 Ig treatment. Following this example, the identification of the molecular targets causing the reduced signals and their restoration is a visionary way to reestablish tolerance and develop novel therapeutic avenues for immunopathologies.


Assuntos
Autoimunidade , Síndromes de Imunodeficiência , Animais , Anticorpos , Antígeno CTLA-4 , Humanos , Tolerância Imunológica , Camundongos
12.
Cell Mol Life Sci ; 79(10): 513, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097202

RESUMO

The link between cancer and aberrant glycosylation has recently become evident. Glycans and their altered forms, known as tumour-associated carbohydrate antigens (TACAs), are diverse, complex and difficult to target therapeutically. Lectins are naturally occurring glycan-binding proteins  that offer a unique opportunity to recognise TACAs. T cells expressing chimeric antigen receptors (CARs) have proven to be a successful immunotherapy against leukaemias, but so far have shown limited success in solid tumours. We developed a panel of lectin-CARs that recognise the glycosphingolipid globotriaosylceramide (Gb3), which is overexpressed in various cancers, such as Burkitt's lymphoma, colorectal, breast and pancreatic. We have selected the following lectins: Shiga toxin's B-subunit from Shigella dysenteriae, LecA from Pseudomonas aeruginosa, and the engineered lectin Mitsuba from Mytilus galloprovincialis as antigen-binding domains and fused them to a well-known second-generation CAR. The Gb3-binding lectin-CARs have demonstrated target-specific cytotoxicity against Burkitt's lymphoma-derived cell lines as well as solid tumour cells from colorectal and triple-negative breast cancer. Our findings reveal the big potential of lectin-based CARs as therapeutical applications to target Gb3 and other TACAs expressed in haematological malignancies and solid tumours.


Assuntos
Linfoma de Burkitt , Neoplasias Colorretais , Receptores de Antígenos Quiméricos , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/terapia , Humanos , Lectinas/metabolismo , Polissacarídeos/metabolismo , Linfócitos T
13.
Immunol Rev ; 291(1): 8-25, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31402501

RESUMO

The αß T-cell receptor (TCR) is a multiprotein complex controlling the activation of T cells. Although the structure of the complete TCR is not known, cumulative evidence supports that the TCR cycles between different conformational states that are promoted either by thermal motion or by force. These structural transitions determine whether the TCR engages intracellular effectors or not, regulating TCR phosphorylation and signaling. As for other membrane receptors, ligand binding selects and stabilizes the TCR in active conformations, and/or switches the TCR to activating states that were not visited before ligand engagement. Here we review the main models of TCR allostery, that is, ligand binding at TCRαß changes the structure at CD3 and ζ. (a) The ITAM and proline-rich sequence exposure model, in which the TCR's cytoplasmic tails shield each other and ligand binding exposes them for phosphorylation. (b) The membrane-ITAM model, in which the CD3ε and ζ tails are sequestered inside the membrane and again ligand binding exposes them. (c) The mechanosensor model in which ligand binding exerts force on the TCR, inducing structural changes that allow signaling. Since these models are complementary rather than competing, we propose a unified model that aims to incorporate all existing data.


Assuntos
Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Humanos , Ligantes , Ativação Linfocitária , Modelos Biológicos , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Relação Estrutura-Atividade
14.
J Immunol ; 203(2): 569-579, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31167772

RESUMO

During T cell development, Lck gene expression is temporally controlled by its proximal and distal promoters. The pLckCre transgenic mouse available from The Jackson Laboratory, in which the proximal promoter of Lck drives Cre expression, is a commonly used Cre driver line to recombine genes flanked by loxP sites in T cells. pLckCre drives recombination early in thymocyte development and is frequently used to delete genes in αß and γδ T cells. We found that pLckCre failed to efficiently delete floxed genes in γδ T cells in contrast to a complete deletion in conventional as well as unconventional αß T cells. Mechanistically, γδ T cells inefficiently transcribed the endogenous proximal Lck promoter compared with αß T cells during adult thymic development. A small population of γδ T cells that had activated pLckCre was detected, many of which were located in nonlymphoid organs as well as precommitted IL-17- or IFN-γ-producing γδ T effector cells. In newborn thymi, both pLckCre and endogenous Lck proximal promoter expression were substantially enhanced, giving rise to an elevated fraction of γδ T cells with recombined floxed genes that were increased in unique γδ T subsets, such as the IL-17-producing γδ T cells. Our data point out striking differences in Lck transcription between perinatal and adult γδ T cell development. Taken together, the data presented in this study shed new light on γδ T cell development and stimulate a reanalysis of data generated using the pLckCre transgenic mice.


Assuntos
Integrases/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Regiões Promotoras Genéticas/genética , Receptores de Antígenos de Linfócitos T gama-delta/genética , Animais , Diferenciação Celular/genética , Interleucina-17/genética , Camundongos , Camundongos Transgênicos , Subpopulações de Linfócitos T/imunologia
15.
Molecules ; 26(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946587

RESUMO

Acute and chronic transplant rejections due to alloreactivity are essential contributors to graft loss. However, the strength of alloreactivity is biased by non-immunological factors such as ischemia reperfusion injury (IRI). Accordingly, protection from IRI could be favorable in terms of limiting graft rejection. Caveolin-1 (Cav-1) is part of the cell membrane and an important regulator of intracellular signaling. Cav-1 has been demonstrated to limit IRI and to promote the survival of a variety of cell types including renal cells under stress conditions. Accordingly, Cav-1 could also play a role in limiting anti-graft immune responses. Here, we evaluated a possible association between pre-transplant serum concentrations of Cav-1 and the occurrence of rejection during follow-up in a pilot study. Therefore, Cav-1-serum concentrations were analyzed in 91 patients at the time of kidney transplantation and compared to the incidence of acute and chronic rejection. Higher Cav-1 levels were associated with lower occurrence of acute cellular tubulointerstitial rejection episodes.


Assuntos
Caveolina 1/sangue , Rejeição de Enxerto/sangue , Transplante de Rim/efeitos adversos , Nefrite Intersticial/sangue , Nefrite Intersticial/etiologia , Adulto , Idoso , Biomarcadores , Feminino , Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/mortalidade , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Nefrite Intersticial/diagnóstico , Nefrite Intersticial/mortalidade , Período Perioperatório , Prognóstico , Traumatismo por Reperfusão/diagnóstico , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo
16.
Immunology ; 159(3): 298-308, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31674657

RESUMO

Following T-cell antigen receptor (TCR) engagement, rearrangement of the actin cytoskeleton supports intracellular signal transduction and T-cell activation. The non-catalytic region of the tyrosine kinase (Nck) molecule is an adapter protein implicated in TCR-induced actin polymerization. Further, Nck is recruited to the CD3ε subunit of the TCR upon TCR triggering. Here we examine the role of actin polymerization in the recruitment of Nck to the TCR. To this end, Nck binding to CD3ε was quantified in Jurkat cells using the proximity ligation assay. We show that inhibition of actin polymerization using cytochalasin D delayed the recruitment of Nck1 to the TCR upon TCR triggering. Interestingly, CD3ε phosphorylation was also delayed. These findings suggest that actin polymerization promotes the recruitment of Nck to the TCR, enhancing downstream signaling, such as phosphorylation of CD3ε.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Complexo CD3/metabolismo , Ativação Linfocitária , Proteínas Oncogênicas/metabolismo , Complexo Receptor-CD3 de Antígeno de Linfócitos T/metabolismo , Linfócitos T/enzimologia , Citoesqueleto de Actina/imunologia , Actinas/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Complexo CD3/imunologia , Citocalasina D/farmacologia , Humanos , Células Jurkat , Ativação Linfocitária/efeitos dos fármacos , Proteínas Oncogênicas/genética , Fosforilação , Polimerização , Ligação Proteica , Complexo Receptor-CD3 de Antígeno de Linfócitos T/genética , Complexo Receptor-CD3 de Antígeno de Linfócitos T/imunologia , Transdução de Sinais , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Fatores de Tempo , Proteína-Tirosina Quinase ZAP-70/metabolismo
17.
Biochem Soc Trans ; 48(6): 2387-2397, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33242069

RESUMO

The adaptive immune system relies on B and T lymphocytes to ensure a specific and long-lasting protection of an individual from a wide range of potential pathogenic hits. Lymphocytes are highly potent and efficient in eliminating pathogens. However, lymphocyte activation must be tightly regulated to prevent incorrect activity that could result in immunopathologies, such as autoimmune disorders or cancers. Comprehensive insight into the molecular events underlying lymphocyte activation is of enormous importance to better understand the function of the immune system. It provides the basis to design therapeutics to regulate lymphocyte activation in pathological scenarios. Most reported defects in immunopathologies affect the regulation of intracellular signaling pathways. This highlights the importance of these molecules, which control lymphocyte activation and homeostasis impacting lymphocyte tolerance to self, cytokine production and responses to infections. Most evidence for these defects comes from studies of disease models in genetically engineered mice. There is an increasing number of studies focusing on lymphocytes derived from patients which supports these findings. Many indirectly involved proteins are emerging as unexpected regulators of the immune system. In this mini-review, we focus in proteins that regulate plasma membrane (PM) compartmentalization and thereby impact the steady state and the activation of immunoreceptors, namely the T cell antigen receptor (TCR) and the B cell antigen receptor (BCR). Some of these membrane proteins are shown to be involved in immune abnormalities; others, however, are not thoroughly investigated in the context of immune pathogenesis. We aim to highlight them and stimulate future research avenues.


Assuntos
Linfócitos B/citologia , Caveolina 1/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Linfócitos T/citologia , Tetraspanina 28/metabolismo , Animais , Doenças Autoimunes/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais
18.
Cell Commun Signal ; 18(1): 183, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33225946

RESUMO

BACKGROUND: Upon engagement of the T-cell receptor (TCR), the Src-family protein tyrosine kinase p56Lck phosphorylates components of the TCR (e.g. the TCRζ chains), thereby initiating T-cell activation. The enzymatic activity of Lck is primarily regulated via reversible and dynamic phosphorylation of two tyrosine residues, Y394 and Y505. Lck possesses an additional highly conserved tyrosine Y192, located within the SH2 domain, whose role in T-cell activation is not fully understood. METHODS: Knock-in mice expressing a phospho-mimetic (Y192E) form of Lck were generated. Cellular and biochemical characterization was performed to elucidate the function of Y192 in primary T cells. HEK 293T and Jurkat T cells were used for in vitro studies. RESULTS: Co-immunoprecipitation studies and biochemical analyses using T cells from LckY192E knock-in mice revealed a diminished binding of LckY192E to CD45 and a concomitant hyperphosphorylation of Y505, thus corroborating previous data obtained in Jurkat T cells. Surprisingly however, in vitro kinase assays showed that LckY192E possesses a normal enzymatic activity in human and murine T cells. FLIM/FRET measurements employing an LckY192E biosensor further indicated that the steady state conformation of the LckY192E mutant is similar to Lckwt. These data suggest that Y192 might regulate Lck functions also independently from the Lck/CD45-association. Indeed, when LckY192E was expressed in CD45-/-/Csk-/- non-T cells (HEK 293T cells), phosphorylation of Y505 was similar to Lckwt, but LckY192E still failed to optimally phosphorylate and activate the Lck downstream substrate ZAP70. Furthermore, LckY19E was recruited less to CD3 after TCR stimulation. CONCLUSIONS: Taken together, phosphorylation of Y192 regulates Lck functions in T cells at least twofold, by preventing Lck association to CD45 and by modulating ligand-induced recruitment of Lck to the TCR. MAJOR FINDINGS: Our data change the current view on the function of Y192 and suggest that Y192 also regulates Lck activity in a manner independent of Y505 phosphorylation. Video Abstract.


Assuntos
Antígenos Comuns de Leucócito/metabolismo , Ativação Linfocitária/imunologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/química , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Linfócitos T/imunologia , Tirosina/metabolismo , Domínios de Homologia de src , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Cinética , Camundongos Endogâmicos C57BL , Fosforilação , Conformação Proteica , Receptores de Antígenos de Linfócitos T/metabolismo , Baço/imunologia , Relação Estrutura-Atividade , Especificidade por Substrato , Proteína-Tirosina Quinase ZAP-70/metabolismo
19.
Immunity ; 35(2): 151-3, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21867922

RESUMO

In the current issue of Immunity, Martínez-Martín et al. (2011) describe the central supramolecular activation cluster (cSMAC) as a site of clathrin-independent T cell receptor (TCR) internalization and trogocytosis. Further, they identify small Rho GTPases TC21 and RhoG as key mediators of these processes.

20.
J Immunol ; 198(1): 47-52, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27994168

RESUMO

The activity of the αß TCR is controlled by conformational switches. In the resting conformation, the TCR is not phosphorylated and is inactive. Binding of multivalent peptide-MHC to the TCR stabilizes the active conformation, leading to TCR signaling. These two conformations allow the TCRs to be allosterically regulated. We review recent data on heterotropic allostery where peptide-MHC and membrane cholesterol serve opposing functions as positive and negative allosteric regulators, respectively. In resting T cells cholesterol keeps TCRs in the resting conformation that otherwise would become spontaneously active. This regulation is well described by the classical Monod-Wyman-Changeux model of allostery. Moreover, the observation that TCRs assemble into nanoclusters might allow for homotropic allostery, in which individual TCRs could positively cooperate and thus enhance the sensitivity of T cell activation. This new view of TCR regulation will contribute to a better understanding of TCR functioning.


Assuntos
Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/imunologia , Regulação Alostérica , Animais , Humanos , Modelos Moleculares , Conformação Proteica , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA