Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Genet ; 142(11): 1587-1601, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37758910

RESUMO

ARSACS (autosomal recessive spastic ataxia of Charlevoix-Saguenay) is a human neurological disorder characterized by progressive cerebellar ataxia and peripheral neuropathy. A recently recognized disorder in Great Pyrenees dogs is similarly characterized by widespread central nervous system degeneration leading to progressive cerebellar ataxia and spasticity, combined with peripheral neuropathy. Onset of clinical signs occurred in puppies as young as 4 months of age, with slow progression over several years. A multi-generation pedigree suggested an autosomal recessive mode of inheritance. Histopathology revealed consistent cerebellar Purkinje cell degeneration, neuronal degeneration in brainstem nuclei, widespread spinal cord white matter degeneration, ganglion cell degeneration, inappropriately thin myelin sheaths or fully demyelinated peripheral nerve fibers, and normal or only mild patterns of denervation atrophy in skeletal muscles. Genome-wide single nucleotide polymorphism (SNP) genotype data was collected from 6 cases and 26 controls, where homozygosity mapping identified a 3.3 Mb region on CFA25 in which all cases were homozygous and all controls were either heterozygous or homozygous for alternate haplotypes. This region tagged the SACS gene where variants are known to cause ARSACS. Sanger sequencing of SACS in affected dogs identified a 4 bp deletion that causes a frame shift and truncates 343 amino acids from the C terminus of the encoded sacsin protein (p.Val4244AlafsTer32). Our clinical and histopathological descriptions of this canine disorder contribute to the description of human ARSACS and represents the first naturally occurring large animal model of this disorder.


Assuntos
Ataxia Cerebelar , Doenças do Sistema Nervoso Periférico , Ataxias Espinocerebelares , Animais , Cães , Proteínas de Choque Térmico/genética , Mutação , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia
2.
PLoS Genet ; 15(9): e1008378, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31479451

RESUMO

Primary ciliary dyskinesia (PCD) is a hereditary defect of motile cilia in humans and several domestic animal species. Typical clinical findings are chronic recurrent infections of the respiratory tract and fertility problems. We analyzed an Alaskan Malamute family, in which two out of six puppies were affected by PCD. The parents were unaffected suggesting autosomal recessive inheritance. Linkage and homozygosity mapping defined critical intervals comprising ~118 Mb. Whole genome sequencing of one case and comparison to 601 control genomes identified a disease associated frameshift variant, c.43delA, in the NME5 gene encoding a sparsely characterized protein associated with ciliary function. Nme5-/- knockout mice exhibit doming of the skull, hydrocephalus and sperm flagellar defects. The genotypes at NME5:c.43delA showed the expected co-segregation with the phenotype in the Alaskan Malamute family. An additional unrelated Alaskan Malamute with PCD and hydrocephalus that became available later in the study was also homozygous mutant at the NME5:c.43delA variant. The mutant allele was not present in more than 1000 control dogs from different breeds. Immunohistochemistry demonstrated absence of the NME5 protein from nasal epithelia of an affected dog. We therefore propose NME5:c.43delA as the most likely candidate causative variant for PCD in Alaskan Malamutes. These findings enable genetic testing to avoid the unintentional breeding of affected dogs in the future. Furthermore, the results of this study identify NME5 as a novel candidate gene for unsolved human PCD and/or hydrocephalus cases.


Assuntos
Transtornos da Motilidade Ciliar/genética , Nucleosídeo NM23 Difosfato Quinases/genética , Animais , Cruzamento , Cílios/genética , Transtornos da Motilidade Ciliar/fisiopatologia , Cães/genética , Feminino , Mutação da Fase de Leitura/genética , Ligação Genética/genética , Testes Genéticos , Genótipo , Humanos , Masculino , Mutação/genética , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Fenótipo , Sequenciamento Completo do Genoma
3.
Genet Sel Evol ; 52(1): 61, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33054768

RESUMO

BACKGROUND: Leonberger is a giant dog breed formed in the 1850s in Germany. Its post-World War II popularity has resulted in a current global population of ~ 30,000 dogs. The breed has predispositions to neurodegenerative disorders and cancer, which is likely due in large part to limited genetic diversity. However, to date there is no scientific literature on the overall demography and genomic architecture of this breed. RESULTS: We assessed extensive pedigree records, SNP array genotype data, and whole-genome sequences (WGS) on 142,072, 1203 and 39 Leonberger dogs, respectively. Pedigree analyses identified 22 founder animals and revealed an apparent popular sire effect. The average pedigree-based inbreeding coefficient of 0.29 and average kinship of 0.31 show a dramatic loss of genetic diversity. The observed average life span decreased over time from 9.4 years in 1989 to 7.7 years in 2004. A global health survey confirmed a high prevalence of cancer and neurological disorders. Analysis of SNP-based runs of homozygosity (ROH) identified 125,653 ROH with an average length of 5.88 Mb, and confirmed an average inbreeding coefficient of 0.28. Genome-wide filtering of the WGS data revealed 28 non-protein-changing variants that were present in all Leonberger individuals and a list of 22 potentially pathogenic variants for neurological disorders of which 50% occurred only in Leonbergers and 50% occurred rarely in other breeds. Furthermore, one of the two mtDNA haplogroups detected was present in one dog only. CONCLUSIONS: The increasing size of the Leonberger population has been accompanied by a considerable loss of genetic diversity after the bottleneck that occurred in the 1940s due to the intensive use of popular sires resulting in high levels of inbreeding. This might explain the high prevalence of certain disorders; however, genomic data provide no evidence for fixed coding variants that explain these predispositions. The list of candidate causative variants for polyneuropathy needs to be further evaluated. Preserving the current genetic diversity is possible by increasing the number of individuals for breeding while restricting the number of litters per sire/dam. In addition, outcrossing would help optimize long-term genetic diversity and contribute to the sustainability and health of the population.


Assuntos
Doenças do Cão/genética , Cães/genética , Endogamia , Polimorfismo de Nucleotídeo Único , Animais , Doenças do Cão/epidemiologia , Linhagem
4.
Genet Sel Evol ; 52(1): 70, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208093

RESUMO

An amendment to this paper has been published and can be accessed via the original article.

5.
BMC Genomics ; 18(1): 662, 2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28841859

RESUMO

BACKGROUND: Many inherited polyneuropathies (PN) observed in dogs have clinical similarities to the genetically heterogeneous group of Charcot-Marie-Tooth (CMT) peripheral neuropathies in humans. The canine disorders collectively show a variable expression of progressive clinical signs and ages of onset, and different breed prevalences. Previously in the Leonberger breed, a variant highly associated with a juvenile-onset PN was identified in the canine orthologue of a CMT-associated gene. As this deletion in ARHGEF10 (termed LPN1) does not explain all cases, PN in this breed may encompass variants in several genes with similar clinical and histopathological features. RESULTS: A genome-wide comparison of 173 k SNP genotypes of 176 cases, excluding dogs homozygous for the ARHGEF10 variant, and 138 controls, was carried out to detect further PN-associated variants. A single suggestive significant association signal on CFA15 was found. The genome of a PN-affected Leonberger homozygous for the associated haplotype was sequenced and variants in the 7.7 Mb sized critical interval were identified. These variants were filtered against a database of variants observed in 202 genomes of various dog breeds and 3 wolves, and 6 private variants in protein-coding genes, all in complete linkage disequilibrium, plus 92 non-coding variants were revealed. Five of the coding variants were predicted to have low or moderate effect on the encoded protein, whereas a 2 bp deletion in GJA9 results in a frameshift of high impact. GJA9 encodes connexin 59, a connexin gap junction family protein, and belongs to a group of CMT-associated genes that have emerged as important components of peripheral myelinated nerve fibers. The association between the GJA9 variant and PN was confirmed in an independent cohort of 296 cases and 312 controls. Population studies showed a dominant mode of inheritance, an average age of onset of approximately 6 years, and incomplete penetrance. CONCLUSIONS: This GJA9 variant represents a highly probable candidate variant for another form of PN in Leonberger dogs, which we have designated LPN2, and a new candidate gene for CMT disease. To date, approximately every third PN-diagnosed Leonberger dog can be explained by the ARHGEF10 or GJA9 variants, and we assume that additional genetic heterogeneity in this condition exists in the breed.


Assuntos
Conexinas/genética , Mutação da Fase de Leitura , Polineuropatias/genética , Alelos , Sequência de Aminoácidos , Animais , Conexinas/química , Cães , Técnicas de Genotipagem , Fenótipo , Polineuropatias/patologia , Sequenciamento Completo do Genoma
6.
PLoS Genet ; 10(10): e1004635, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25275565

RESUMO

An inherited polyneuropathy (PN) observed in Leonberger dogs has clinical similarities to a genetically heterogeneous group of peripheral neuropathies termed Charcot-Marie-Tooth (CMT) disease in humans. The Leonberger disorder is a severe, juvenile-onset, chronic, progressive, and mixed PN, characterized by exercise intolerance, gait abnormalities and muscle atrophy of the pelvic limbs, as well as inspiratory stridor and dyspnea. We mapped a PN locus in Leonbergers to a 250 kb region on canine chromosome 16 (Praw = 1.16×10-10, Pgenome, corrected = 0.006) utilizing a high-density SNP array. Within this interval is the ARHGEF10 gene, a member of the rho family of GTPases known to be involved in neuronal growth and axonal migration, and implicated in human hypomyelination. ARHGEF10 sequencing identified a 10 bp deletion in affected dogs that removes four nucleotides from the 3'-end of exon 17 and six nucleotides from the 5'-end of intron 17 (c.1955_1958+6delCACGGTGAGC). This eliminates the 3'-splice junction of exon 17, creates an alternate splice site immediately downstream in which the processed mRNA contains a frame shift, and generates a premature stop codon predicted to truncate approximately 50% of the protein. Homozygosity for the deletion was highly associated with the severe juvenile-onset PN phenotype in both Leonberger and Saint Bernard dogs. The overall clinical picture of PN in these breeds, and the effects of sex and heterozygosity of the ARHGEF10 deletion, are less clear due to the likely presence of other forms of PN with variable ages of onset and severity of clinical signs. This is the first documented severe polyneuropathy associated with a mutation in ARHGEF10 in any species.


Assuntos
Doenças do Cão/genética , Mutação , Polineuropatias/genética , Polineuropatias/veterinária , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores Etários , Idade de Início , Animais , Estudos de Casos e Controles , Cães , Feminino , Deleção de Genes , Estudo de Associação Genômica Ampla , Homozigoto , Masculino , Polimorfismo de Nucleotídeo Único , Sítios de Splice de RNA , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo
9.
Animals (Basel) ; 14(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38473107

RESUMO

(1) Background: Muscle hypertrophy, swallowing disorders, and gait abnormalities are clinical signs common to many muscle diseases, including muscular dystrophies, non-dystrophic myotonias, genetic myopathies associated with deficiency of myostatin, and acquired inflammatory myopathies. Here, we investigated underlying causes of this triad of clinical signs in four young French bulldogs via muscle histopathology coupled with whole genome and Sanger sequencing. (2) Methods: Dogs were evaluated by veterinary clinical internists and neurologists, and biopsies were obtained for histopathological diagnosis. DNA was submitted for whole genome sequencing, followed by bioinformatics evaluation and confirmation of variants via Sanger sequencing in two cases. (3) Results: Two novel variants were identified. The first, found in two related French bulldogs, was a homozygous variant in the chloride channel gene CLCN1 known to cause non-dystrophic congenital myotonia, and the second, found in an unrelated French bulldog, was a heterozygous variant in the cAMP phosphodiesterase gene PDE4C, which is the major phosphodiesterase expressed in skeletal muscle and may play a role in decreasing muscle atrophy. An underlying molecular basis in one other case has not yet been identified. (4) Conclusions: Here, we identified two novel variants, one in the CLCN1 and one in the PDE4C gene, associated with clinical signs of muscle hypertrophy, dysphagia, and gait abnormalities, and we suggested other bases of these phenotypes in French bulldogs that are yet to be discovered. Identification of genes and deleterious variants associated with these clinical signs may assist breeders in improving the overall health of this very popular breed and may lead to the identification of new therapies to reverse muscle atrophy in people and animals with neuromuscular diseases.

10.
Genes (Basel) ; 15(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38397183

RESUMO

Miniature Schnauzers are predisposed to primary hypertriglyceridemia (HTG). In this study, we performed whole genome sequencing (WGS) of eight Miniature Schnauzers with primary HTG and screened for risk variants in six HTG candidate genes: LPL, APOC2, APOA5, GPIHBP1, LMF1, and APOE. Variants were filtered to identify those present in ≥2 Miniature Schnauzers with primary HTG and uncommon (<10% allele frequency) in a WGS variant database including 613 dogs from 61 other breeds. Three variants passed filtering: an APOE TATA box deletion, an LMF1 intronic SNP, and a GPIHBP1 missense variant. The APOE and GPIHBP1 variants were genotyped in a cohort of 108 Miniature Schnauzers, including 68 with primary HTG and 40 controls. A multivariable regression model, including age and sex, did not identify an effect of APOE (estimate = 0.18, std. error = 0.14; p = 0.20) or GPIHBP1 genotypes (estimate = -0.26, std. error = 0.42; p = 0.54) on triglyceride concentration. In conclusion, we did not identify a monogenic cause for primary HTG in Miniature Schnauzers in the six genes evaluated. However, if HTG in Miniature Schnauzers is a complex disease resulting from the cumulative effects of multiple variants and environment, the identified variants cannot be ruled out as contributing factors.


Assuntos
Hipertrigliceridemia , Humanos , Cães , Animais , Hipertrigliceridemia/genética , Hipertrigliceridemia/veterinária , Genótipo , Triglicerídeos/genética , Análise de Sequência , Apolipoproteínas E/genética
11.
J Fungi (Basel) ; 10(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38535207

RESUMO

Pet dogs are a valuable natural animal model for studying relationships between primary immunodeficiencies and susceptibility to Pneumocystis and other opportunistic respiratory pathogens. Certain breeds, such as the Cavalier King Charles Spaniel, are over-represented for Pneumocystis pneumonia (PCP), suggesting the presence of a primary immunodeficiency in the breed. Here, we report the discovery of a CARMIL2 nonsense variant in three Cavalier King Charles Spaniel dogs with either PCP (n = 2) or refractory Bordetella pneumonia (n = 1). CARMIL2 encodes a protein that plays critical roles in T-cell activation and other aspects of immune function. Deleterious CARMIL2 variants have recently been reported in human patients with PCP and other recurrent pneumonias. In addition to opportunistic respiratory infection, the affected dogs also exhibited other clinical manifestations of CARMIL2 deficiencies that have been reported in humans, including early-onset gastrointestinal disease, allergic skin disease, mucocutaneous lesions, abscesses, autoimmune disorders, and gastrointestinal parasitism. This discovery highlights the potential utility of a natural canine model in identifying and studying primary immunodeficiencies in patients affected by PCP.

12.
Genes (Basel) ; 14(8)2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37628610

RESUMO

The spectrum of canine muscular dystrophies has rapidly grown with the recent identification of several more affected breeds and associated mutations. Defects include those in genes and protein products associated with the sarcolemma (dystrophin deficient X-linked muscular dystrophy and sarcoglycan-deficient limb-girdle muscular dystrophy) and with the extracellular matrix (collagen 6, laminin α2, and α-dystroglycan-deficient congenital muscular dystrophies). With the increasing application of whole genome sequencing and whole exome sequencing, the clinical and pathological spectra associated with specific neuromuscular genetic defects are constantly evolving. In this report, we provide a brief overview of the current status of gene defects reported in canine muscular dystrophies. We also report the causative mutations for novel forms of X-linked muscular dystrophy in Brittany spaniels and in a French bulldog.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Distrofia Muscular de Duchenne , Cães , Animais , Distrofia Muscular do Cíngulo dos Membros/genética , Matriz Extracelular , Laminina/genética , Mutação
13.
J Vet Intern Med ; 37(6): 2504-2509, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37706358

RESUMO

Two (male and female) 10-month-old American Staffordshire Terrier littermates presented for progressive weakness, joint contracture, and distal limb joint hyperlaxity beginning around 6 months of age. Neurological examination, serum creatine kinase activity, infectious disease titers, cerebrospinal fluid analysis, and electrodiagnostic testing were performed. Muscle biopsies were collected for histopathology and immunofluorescence staining for localization of dystrophy associated proteins. Whole-genome sequencing (WGS) was performed on 1 affected dog. Variants were compared to a database of 671 unaffected dogs of multiple breeds. Histopathology confirmed a dystrophic phenotype and immunofluorescence staining of muscle cryosections revealed an absence of staining for collagen-6. WGS identified a homozygous 1 bp deletion in the COL6A3 gene, unique to the first affected dog. Sanger sequencing confirmed the homozygous presence of the frameshift variant in both affected dogs. This report describes the clinical features and most likely genetic basis of an Ullrich-like recessively inherited form of congenital muscular dystrophy in American Staffordshire Terriers.


Assuntos
Doenças do Cão , Distrofias Musculares , Feminino , Masculino , Animais , Cães , Estados Unidos , Colágeno , Biópsia/veterinária , Bases de Dados Factuais , Extremidades , Doenças do Cão/genética
14.
J Vet Intern Med ; 36(4): 1237-1247, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35815881

RESUMO

BACKGROUND: Myelofibrosis often lacks an identifiable cause in dogs. In humans, most primary myelofibrosis cases develop secondary to driver mutations in JAK2, CALR, or MPL. OBJECTIVES: To determine the prevalence of variants in JAK2, CALR, or MPL candidate regions in dogs with myelofibrosis and in healthy dogs. ANIMALS: Twenty-six dogs with myelofibrosis that underwent bone marrow biopsy between 2010 and 2018 and 25 control dogs matched for age, sex, and breed. METHODS: Cross-sectional study. Amplicon sequencing of JAK2 exons 12 and 14, CALR exon 9, and MPL exon 10 was performed on formalin-fixed, decalcified, paraffin-embedded bone marrow (myelofibrosis) or peripheral blood (control) DNA. Somatic variants were categorized as likely-benign or possibly-pathogenic based on predicted impact on protein function. Within the myelofibrosis group, hematologic variables and survival were compared by variant status (none, likely-benign only, and ≥1 possibly-pathogenic). The effect of age on variant count was analyzed using linear regression. RESULTS: Eighteen of 26 (69%) myelofibrosis cases had somatic variants, including 9 classified as possibly-pathogenic. No somatic variants were detected in controls. Within the myelofibrosis group, hematologic variables and survival did not differ by variant status. The number of somatic variants per myelofibrosis case increased with age (estimate, 0.69; SE, 0.29; P = .03). CONCLUSIONS AND CLINICAL IMPORTANCE: Somatic variants might initiate or perpetuate myelofibrosis in dogs. Our findings suggest the occurrence of clonal hematopoiesis in dogs, with increasing incidence with age, as observed in humans.


Assuntos
Doenças do Cão , Mielofibrose Primária , Animais , Calreticulina/genética , Calreticulina/metabolismo , Estudos Transversais , Doenças do Cão/genética , Cães , Humanos , Mutação , Mielofibrose Primária/genética , Mielofibrose Primária/veterinária , Receptores de Trombopoetina/genética , Receptores de Trombopoetina/metabolismo
15.
J Vet Intern Med ; 36(1): 279-284, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34854126

RESUMO

A 2-year-old female spayed dog was presented with a chronic history of short-strided gait and inability to completely open the jaw. Clinical signs were present since the dog was adopted from a humane society at a few months of age. Serum creatine kinase activity was abnormally high. Neurological examination, electromyography, muscle biopsies with immunofluorescent staining, and whole genome sequencing (WGS) were performed. A dystrophic phenotype was identified histologically in muscle biopsies, deficiency of laminin α2 protein was confirmed by immunofluorescent staining, and a deletion in the LAMA2 gene was identified by analysis of the WGS data. Congenital muscular dystrophy associated with a disease variant in LAMA2 was identified.


Assuntos
Doenças do Cão , Distrofias Musculares , Animais , Biópsia/veterinária , Doenças do Cão/diagnóstico , Doenças do Cão/genética , Cães , Feminino , Deleção de Genes , Laminina/genética , Músculo Esquelético , Distrofias Musculares/genética , Fenótipo
16.
Neuromuscul Disord ; 32(10): 836-841, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36041985

RESUMO

A form of dystrophinopathy with mild or subclinical neuromuscular signs has been previously reported in a family of Labrador retrievers. Markedly and persistently elevated creatine kinase activity was first noted at 6 months of age. Skeletal muscle biopsies revealed a dystrophic phenotype, with dystrophin non-detectable on western blotting and immunohistochemical staining, and with increased utrophin expression. In this report we demonstrate with western blotting that α-dystroglycan is present at essentially normal levels. Whole genome sequencing has also now revealed an approximately 400kb tandem genomic DNA duplication including exons 2-7 of the DMD gene that was inserted into intron 7 of the wild type gene. Skeletal muscle cDNA from 2 cases contained DMD transcripts as expected from an in-frame properly-spliced exon 2-7 tandem insertion. A similar 5' duplication involving DMD exons 2-7 has been reported in a human family with dilated cardiomyopathy but without skeletal myopathy. This is the 3rd confirmed mutation in the DMD gene in Labrador retrievers.


Assuntos
Distrofia Muscular de Duchenne , Animais , Cães , Humanos , Distrofia Muscular de Duchenne/patologia , Distrofina/genética , Distrofina/metabolismo , Éxons/genética , Fenótipo , Músculo Esquelético/patologia , Íntrons
17.
Genes (Basel) ; 13(8)2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-36011338

RESUMO

In this report, we describe a novel genetic basis for congenital dyserythropoietic anemia and polymyopathy in Labrador Retriever littermates characterized by incidental detection of marked microcytosis, inappropriate metarubricytosis, pelvic limb weakness and muscle atrophy. A similar syndrome has been described in English Springer Spaniel littermates with an early onset of anemia, megaesophagus, generalized muscle atrophy and cardiomyopathy. Muscle histopathology in both breeds showed distinctive pathological changes consistent with congenital polymyopathy. Using whole genome sequencing and mapping to the CanFam4 (Canis lupus familiaris reference assembly 4), a nonsense variant in the EHBP1L1 gene was identified in a homozygous form in the Labrador Retriever littermates. The mutation produces a premature stop codon that deletes approximately 90% of the protein. This variant was not present in the English Springer Spaniels. Currently, EHPB1L1 is described as critical to actin cytoskeletal organization and apical-directed transport in polarized epithelial cells, and through connections with Rab8 and a BIN1-dynamin complex generates membrane vesicles in the endocytic recycling compartment. Furthermore, EHBP1L1 knockout mice die early and develop severe anemia. The connection of EHBP1L1 to BIN1 and DMN2 functions is particularly interesting due to BIN1 and DMN2 mutations being causative in forms of centronuclear myopathy. This report, along with an independent study conducted by another group, are the first reports of an association of EHBP1L1 mutations with congenital dyserythropoietic anemia and polymyopathy.


Assuntos
Anemia Diseritropoética Congênita , Miopatias Congênitas Estruturais , Anemia Diseritropoética Congênita/genética , Animais , Códon sem Sentido , Cães , Camundongos , Atrofia Muscular , Mutação , Miopatias Congênitas Estruturais/genética
18.
BMC Genet ; 12: 38, 2011 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-21518446

RESUMO

BACKGROUND: Idiopathic epilepsy (IE) is a naturally occurring and significant seizure disorder affecting all dog breeds. Because dog breeds are genetically isolated populations, it is possible that IE is attributable to common founders and is genetically homogenous within breeds. In humans, a number of mutations, the majority of which are genes encoding ion channels, neurotransmitters, or their regulatory subunits, have been discovered to cause rare, specific types of IE. It was hypothesized that there are simple genetic bases for IE in some purebred dog breeds, specifically in Vizslas, English Springer Spaniels (ESS), Greater Swiss Mountain Dogs (GSMD), and Beagles, and that the gene(s) responsible may, in some cases, be the same as those already discovered in humans. RESULTS: Candidate genes known to be involved in human epilepsy, along with selected additional genes in the same gene families that are involved in murine epilepsy or are expressed in neural tissue, were examined in populations of affected and unaffected dogs. Microsatellite markers in close proximity to each candidate gene were genotyped and subjected to two-point linkage in Vizslas, and association analysis in ESS, GSMD and Beagles. CONCLUSIONS: Most of these candidate genes were not significantly associated with IE in these four dog breeds, while a few genes remained inconclusive. Other genes not included in this study may still be causing monogenic IE in these breeds or, like many cases of human IE, the disease in dogs may be likewise polygenic.


Assuntos
Doenças do Cão/genética , Epilepsia/genética , Epilepsia/veterinária , Animais , Cruzamento , Cães , Ligação Genética , Predisposição Genética para Doença , Repetições de Microssatélites
19.
Genes (Basel) ; 12(12)2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34946876

RESUMO

An episodic nervous system disorder triggered by strenuous exercise, termed border collie collapse (BCC), exists in border collies and related breeds. The genetic basis of BCC is unknown but is believed to be a complex genetic disorder. Our goal was to estimate the heritability (h2SNP) of BCC, define its underlying genetic architecture, and identify associated genomic loci using dense whole-genome single-nucleotide polymorphism (SNP) genotyping data. Genotype data were obtained for ~440,000 SNPs from 343 border collies (168 BCC cases and 175 controls). h2SNP was calculated to be 49-61% depending on the estimated BCC prevalence. A total of 2407 SNPs across the genome accounted for nearly all the h2SNP of BCC, with an estimated 2003 SNPs of small effect, 349 SNPs of moderate effect, and 56 SNPs of large effect. Genome-wide association analyses identified significantly associated loci on chromosomes 1, 6, 11, 20, and 28, which accounted for ~5% of the total BCC h2SNP. We conclude that BCC is a moderately- to highly-heritable complex polygenetic disease resulting from contributions from hundreds to thousands of genetic variants with variable effect sizes. Understanding how much the BCC phenotype is determined by genetics and whether major gene mutations are likely to exist inform veterinarians and working/stock dog communities of the true nature of this condition.


Assuntos
Doenças do Cão/genética , Padrões de Herança , Doenças do Sistema Nervoso/veterinária , Esforço Físico , Animais , Ataxia/genética , Ataxia/fisiopatologia , Ataxia/veterinária , Doenças do Cão/fisiopatologia , Cães , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/veterinária , Genótipo , Coxeadura Animal/genética , Coxeadura Animal/fisiopatologia , Masculino , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/fisiopatologia , Polimorfismo de Nucleotídeo Único
20.
Mol Genet Metab Rep ; 29: 100792, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34584846

RESUMO

Hereditary xanthinuria is a rare autosomal recessive disease caused by missense and loss of function variants in the xanthine dehydrogenase (XDH) or molybdenum cofactor sulfurase (MOCOS) genes. The aim of this study was to uncover variants underlying risk for xanthinuria in dogs. Affected dogs included two Manchester Terriers, three Cavalier King Charles Spaniels, an English Cocker Spaniel, a Dachshund, and a mixed-breed dog. Four putative causal variants were discovered: an XDH c.654G > A splice site variant that results in skipping of exon 8 (mixed-breed dog), a MOCOS c.232G > T splice site variant that results in skipping of exon 2 (Manchester Terriers), a MOCOS p.Leu46Pro missense variant (Dachshund), and a MOCOS p.Ala128Glyfs*30 frameshift variant that results in a premature stop codon (Cavalier King Charles Spaniels and English Cocker Spaniel). The two splice site variants suggest that the regions skipped are critical to the respective enzyme function, though protein misfolding is an alternative theory for loss of function. The MOCOS p.Leu46Pro variant has not been previously reported in human or other animal cases and provides novel data supporting this residue as critical to MOCOS function. All variants were present in the homozygous state in affected dogs, indicating an autosomal recessive mode of inheritance. Allele frequencies of these variants in breed-specific populations ranged from 0 to 0.18. In conclusion, multiple diverse variants appear to be responsible for hereditary xanthinuria in dogs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA