RESUMO
Antibiotic resistance is a major public health threat, and alternatives to antibiotic therapy are urgently needed. Immunotherapy, particularly the blockade of inhibitory immune checkpoints, is a leading treatment option in cancer and autoimmunity. In this study, we used a murine model of Salmonella Typhimurium infection to investigate whether immune checkpoint blockade could be applied to bacterial infection. We found that the immune checkpoint T-cell immunoglobulin and ITIM domain (TIGIT) was significantly upregulated on lymphocytes during infection, particularly on CD4+ T cells, drastically limiting their proinflammatory function. Blockade of TIGIT in vivo using monoclonal antibodies was able to enhance immunity and improve bacterial clearance. The efficacy of anti-TIGIT was dependent on the capacity of the antibody to bind to Fc (fragment crystallizable) receptors, giving important insights into the mechanism of anti-TIGIT therapy. This research suggests that targeting immune checkpoints, such as TIGIT, has the potential to enhance immune responses toward bacteria and restore antibacterial treatment options in the face of antibiotic resistance.
Assuntos
Infecções Bacterianas , Imunoterapia , Camundongos Endogâmicos C57BL , Receptores Imunológicos , Regulação para Cima , Animais , Receptores Imunológicos/metabolismo , Imunoterapia/métodos , Camundongos , Regulação para Cima/efeitos dos fármacos , Infecções Bacterianas/imunologia , Infecções Bacterianas/terapia , Salmonella typhimurium/imunologia , Linfócitos T/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Modelos Animais de Doenças , Anticorpos Monoclonais/farmacologia , HumanosRESUMO
Comorbid type 2 diabetes poses a great challenge to the global control of tuberculosis. Here, we assessed the efficacy of metformin (MET), an antidiabetic drug, in mice infected with a very low dose of Mycobacterium tuberculosis In contrast to diabetic mice, infected nondiabetic mice that received the same therapeutic concentration of MET presented with significantly higher disease burden. This warrants further studies to investigate the disparate efficacy of MET against tuberculosis in diabetic and nondiabetic individuals.
Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Metformina , Mycobacterium tuberculosis , Tuberculose , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Tuberculose/tratamento farmacológicoRESUMO
The original article can be found online.
RESUMO
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of synovial tissues in joints, leading to progressive destruction of cartilage and joints. The disease-modifying anti-rheumatic drugs currently in use have side-effects. Thus, there is an urgent need for safe anti-inflammatory therapies for RA. This study aimed to evaluate the therapeutic effect of the flavonoid quercetin on arthritis in mice immunized with type II collagen (CII). An arthritis model was established in C57/BL6 mice by intradermal administration of chicken CII mixed with Freund's complete adjuvant. Quercetin (30 mg/kg orally) and methotrexate (0.75 mg intraperitoneally twice a week) were administered to investigate their protective effects against collagen-induced arthritis (CIA). Levels of tumour necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1ß), IL-6, and the matrix metalloproteinases (MMP), 3, and 9 were detected to assess the anti-inflammatory effect of quercetin. The mRNA expression of MMP3, MMP9, CCL2, and TNF-α was also measured by quantitative real-time PCR. Quercetin significantly alleviated joint inflammation by reducing the levels of circulating cytokines and MMPs. There was a significant decrease in the expression of TNFα and MMP genes in the ankle joints of arthritic mice. A significant reduction in the levels of knee-joint inflammatory mediators were observed with combined quercetin and methotrexate treatment. Thus, quercetin has the potential to prevent joint inflammation and could be used as an adjunct therapy for RA patients who have an inadequate response to anti-rheumatic monotherapy.
Assuntos
Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Mediadores da Inflamação/antagonistas & inibidores , Inibidores de Metaloproteinases de Matriz/administração & dosagem , Metotrexato/administração & dosagem , Quercetina/administração & dosagem , Animais , Articulação do Tornozelo/efeitos dos fármacos , Artrite Experimental/sangue , Artrite Reumatoide/sangue , Proteína C-Reativa/análise , Quimioterapia Combinada , Feminino , Articulação do Joelho/efeitos dos fármacos , Masculino , CamundongosRESUMO
We conducted a microarray study to identify genes that are differentially regulated in the spinal cords of mice with the inflammatory disease experimental autoimmune encephalomyelitis (EAE) relative to healthy mice. In total 181 genes with at least a two-fold increase in expression were identified, and most of these genes were associated with immune function. Unexpectedly, ceruloplasmin (Cp), a ferroxidase that converts toxic ferrous iron to its nontoxic ferric form and also promotes the efflux of iron from astrocytes in the CNS, was shown to be highly upregulated (13.2-fold increase) in EAE spinal cord. Expression of Cp protein is known to be increased in several neurological conditions, but the role of Cp regulation in CNS autoimmune disease is not known. To investigate this, we induced EAE in Cp gene knockout, heterozygous, and wild-type mice. Cp knockout mice were found to have slower disease evolution than wild-type mice (EAE days 13-17; P = 0.05). Interestingly, Cp knockout mice also exhibited a significant increase in the number of astrocytes with reactive morphology in early EAE compared with wild-type mice at the same stage of disease. CNS iron levels were not increased with EAE in these mice. Based on these observations, we propose that an increase in Cp expression could contribute to tissue damage in early EAE. In addition, endogenous CP either directly or indirectly inhibits astrocyte reactivity during early disease, which could also worsen early disease evolution.
Assuntos
Ceruloplasmina/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Animais , Western Blotting , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Medula Espinal/patologia , TranscriptomaRESUMO
Bacille Calmette-Guérin (BCG) remains the only licensed vaccine against tuberculosis (TB). While BCG protects against TB in children, its protection against pulmonary TB in adults is suboptimal, and the development of a better TB vaccine is a global health priority. Previously, we reported two recombinant BCG strains effective against murine TB with low virulence and lung pathology in immunocompromised mice and guinea pigs. We have recently combined these two recombinant BCG strains into one novel vaccine candidate (BCGΔBCG1419c::ESAT6-PE25SS) and evaluated its immunogenicity, efficacy and safety profile in mice. This new vaccine candidate is non-inferior to BCG in protection against TB, presents reduced pro-inflammatory immune responses and displays an enhanced safety profile.
Assuntos
Vacina BCG , Hospedeiro Imunocomprometido , Vacinas Sintéticas , Animais , Vacina BCG/imunologia , Vacina BCG/efeitos adversos , Vacina BCG/genética , Camundongos , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Feminino , Tuberculose/prevenção & controle , Tuberculose/imunologia , Mycobacterium bovis/imunologia , Mycobacterium bovis/genética , Mycobacterium bovis/patogenicidade , Modelos Animais de Doenças , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Camundongos Endogâmicos C57BL , Pulmão/microbiologia , Pulmão/patologia , Pulmão/imunologia , Tuberculose Pulmonar/prevenção & controle , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Eficácia de VacinasRESUMO
The potential roles of TLRs in the cause and pathogenesis of autoimmune CNS inflammation remain contentious. In this study, we examined the effects of targeted deletions of TLR1, TLR2, TLR4, TLR6, TLR9, and MyD88 on the induction of myelin oligodendrocyte glycoprotein 35-55 (MOG(35-55)) peptide/CFA/pertussis toxin-induced autoimmune encephalomyelitis. Although C57BL/6.Tlr1(-/-), C57BL/6.Tlr4(-/-) and C57BL/6.Tlr6(-/-) mice showed normal susceptibility to disease, signs were alleviated in female C57BL/6.Tlr2(-/-) and C57BL/6.Tlr9(-/-) mice and C57BL/6.Tlr2/9(-/-) mice of both sexes. C57BL/6.Myd88(-/-) mice were completely protected. Lower clinical scores were associated with reduced leukocyte infiltrates. These results were confirmed by passive adoptive transfer of disease into female C57BL/6.Tlr2(-/-) and C57BL/6.Tlr9(-/-) mice, where protection in the absence of TLR2 was associated with fewer infiltrating CD4(+) cells in the CNS, reduced prevalence of detectable circulating IL-6, and increased proportions of central (CD62L(+)) CD4(+)CD25(+)Foxp3(+) regulatory T cells. These results provide a potential molecular mechanism for the observed effects of TLR signaling on the severity of autoimmune CNS inflammation.
Assuntos
Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/prevenção & controle , Fator 88 de Diferenciação Mieloide/fisiologia , Receptor 1 Toll-Like/deficiência , Receptor 2 Toll-Like/fisiologia , Receptor 4 Toll-Like/deficiência , Receptor 6 Toll-Like/deficiência , Receptor Toll-Like 9/fisiologia , Animais , Movimento Celular/genética , Movimento Celular/imunologia , Células Cultivadas , Encefalomielite Autoimune Experimental/genética , Feminino , Inativação Gênica , Predisposição Genética para Doença , Glicoproteínas/administração & dosagem , Glicoproteínas/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glicoproteína Mielina-Oligodendrócito , Fator 88 de Diferenciação Mieloide/deficiência , Proteínas do Tecido Nervoso/administração & dosagem , Proteínas do Tecido Nervoso/toxicidade , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/toxicidade , Índice de Gravidade de Doença , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor 2 Toll-Like/deficiência , Receptor Toll-Like 9/deficiênciaRESUMO
Tuberculosis (TB) remains one of the most lethal infectious diseases globally. The only TB vaccine approved by the World Health Organization, Bacille Calmette-Guérin (BCG), protects children against severe and disseminated TB but provides limited protection against pulmonary TB in adults. Although several vaccine candidates have been developed to prevent TB and are undergoing preclinical and clinical testing, BCG remains the gold standard. Currently, BCG is administered as an intradermal injection, particularly in TB endemic countries. However, mounting evidence from experimental animal and human studies indicates that delivering BCG directly into the lungs provides enhanced immune responses and greater protection against TB. Inhalation therapy using handheld delivery devices is used for some diseases and allows the delivery of drugs or vaccines directly into the human respiratory tract. Whether this mode of delivery could also be applicable for live attenuated bacterial vaccines such as BCG or other TB vaccine candidates remains unknown. Here we discuss how two existing inhalation devices, the mucosal atomization device (MAD) syringe, used for influenza vaccines, and the Respimat® Soft Mist™ inhaler, used for chronic obstructive pulmonary disease (COPD) therapy, could be repurposed for mucosal delivery of live attenuated TB vaccines. We also outline the challenges and outstanding research questions that will require further investigations to ensure usefulness of respiratory delivery devices that are cost-effective and accessible to lower- and middle-income TB endemic countries.
Assuntos
Vacinas contra a Tuberculose , Tuberculose , Criança , Animais , Adulto , Humanos , Vacina BCG , Vacinas Atenuadas , Reposicionamento de Medicamentos , Tuberculose/prevenção & controle , PulmãoRESUMO
Background: Prosthetic joint infection (PJI), frequently caused by Staphylococcus aureus, leads to a significant arthroplasty failure rate. Biofilm is a crucial virulence factor of S. aureus that is intrinsic to the pathogenesis of PJI. Biofilm-related infections are recalcitrant to antibiotic treatment. Surgical and antibiotic therapy could be combined with non-antibacterial adjuvants to improve overall treatment success. Ticagrelor, a P2Y12 receptor inhibitor antiplatelet drug, is known to have anti-staphylococcal antibacterial and antibiofilm activity. However, the molecular mechanism for ticagrelor's antibiofilm activity and its efficacy in the treatment of S. aureus PJI are unknown. Methods: To study the in vitro antibacterial and antibiofilm activity of ticagrelor, broth microdilution and crystal violet staining method were used. Ticagrelor's effect on the expression of S. aureus biofilm genes (icaA, icaD, ebps, fib, eno, and agr) was studied using the relative quantification method. To test ticagrelor's in vivo efficacy to treat S. aureus PJI, mice were randomized into five groups (n = 8/group): infected femoral implants treated with ticagrelor alone; infected implants treated with cefazolin alone; infected implants treated with ticagrelor and cefazolin; infected implants treated with phosphate buffer solution (PBS)-positive controls, and sterile implants-negative controls. Ticagrelor was administered orally from day 4 to day 7 post-surgery, while cefazolin was injected intravenously on day 7. Results: Ticagrelor, alone and with selected antibiotics, showed in vitro antibacterial and antibiofilm activity against S. aureus. Strain-specific downregulation of biofilm-related genes, fib, icaD, ebps, and eno, was shown. In an animal model of biofilm-related S. aureus PJI, ticagrelor alone and combined with cefazolin significantly reduced bacterial concentrations on the implants compared with the positive control group. Ticagrelor significantly reduced bacterial dissemination to periprosthetic tissue compared with the positive controls. Conclusion: Ticagrelor adjuvant therapy reduced S. aureus PJI in an animal model. However, this study is very preliminary to make a conclusion on the clinical implication of the findings. Based on the current results, more studies are recommended to better understand its implication.
RESUMO
Background: Most of the arthroplasty surgery failure due to prosthetic joint infections (PJI) is caused by biofilm-associated Staphylococcus aureus. In a recent experimental study, savirin has been used to prevent and treat S. aureus skin infections in animal models. We explored the application of savirin in a PJI mouse model to determine its utility as an adjunct therapy to prevent PJI. Materials and methods: The in-vitro antibacterial and antibiofilm activity of savirin, with or without antibiotics (cefazolin, rifampicin, and vancomycin), against S. aureus were investigated using broth microdilution and crystal violet staining method, respectively. The effect of savirin treatment on the expression of the key biofilm-related genes (icaA, icaD, eno, fib, ebps, and agr) in S. aureus was studied using quantitative reverse transcriptase polymerase chain reaction (qRTPCR). The in-vivo efficacy of savirin alone and with cefazolin to prevent S. aureus PJI was determined using a clinically relevant PJI mouse model. Mice were randomized into five groups (n = 8/group): 1) infected K-wire savirin treated group, 2) infected K-wire cefazolin treated group, 3) infected K-wire savirin plus cefazolin treated group, 4) infected K-wire PBS treated group, 5) sterile K-wire group. Savirin was administered subcutaneously immediately post-surgery and intravenous cefazolin was given on day seven. Results: Savirin inhibited planktonic and biofilm in-vitro growth of S. aureus, showed enhanced inhibitory activity when combined with antibiotics, and down-regulated the expression of key S. aureus biofilm-related genes (icaA, icaD, eno, fib, ebps, and agr). Savirin significantly reduced bacterial counts on joint implants in comparison with the PBS treated control, while savirin plus cefazolin reduced bacterial counts on both implants and peri-prosthetic tissues. Conclusion: Savirin adjuvant therapy may prevent biofilm formation and S. aureus PJI. This study gives baseline data for using savirin for the prevention as well as treatment of S. aureus PJI in future animal studies.
RESUMO
Tuberculosis (TB) is the leading infectious cause of death globally. The only licensed TB vaccine, Bacille Calmette-Guérin (BCG), has low efficacy against TB in adults and is not recommended in people with impaired immunity. The incorporation of the Mycobacterium tuberculosis (Mtb) secretion system ESX-1 into BCG improves immunogenicity and protection against TB in animal models, which is associated with the secretion of the ESX-1-dependent protein ESAT-6. However, the resulting strain, BCG::ESX1Mtb, has been deemed unsafe as a human vaccine, due to prolonged persistence and increased virulence in immunocompromised mice. In this study, we describe a new recombinant BCG strain that uncouples the beneficial aspects of ESAT-6 secretion from the detrimental ESX-1effects on virulence and persistence. The strain was constructed by fusing the ESAT-6-encoding gene esxA to the general secretion signal for the mycobacterial type VII secretion pathway protein PE25. This new strain, BCG::ESAT6-PE25SS, secretes full-length ESAT-6 via the ESX-5 secretion system, which in contrast to ESX-1 is also present in BCG. In vivo testing revealed that ESX-5-targeted ESAT-6 export, induces cytosolic contact, generates ESAT-6-specific T cells and enhances the protective efficacy against TB disease, but is associated with low virulence and reduced persistence in immunocompetent and immunocompromised mice. Additionally, compared to BCG::ESX1Mtb and parental BCG, mucosal administration of BCG::ESAT6-PE25SS is associated with more rapid clearance from the lung. These results warrant further studies to evaluate BCG::ESAT6-PE25SS as a potential live attenuated vaccine candidate for TB.
Assuntos
Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Tuberculose , Animais , Antígenos de Bactérias/genética , Vacina BCG , Proteínas de Bactérias/genética , Camundongos , Tuberculose/prevenção & controle , VirulênciaRESUMO
Quercetin, a bioactive flavonoid with anti-inflammatory, immunosuppressive, and protective properties, is a potential agent for the treatment of rheumatoid arthritis (RA). Collagen-induced arthritis (CIA) is the most commonly used animal model for studying the pathogenesis of RA. This study analysed the therapeutic role of quercetin in collagen-induced arthritis in C57BL/6 mice. The animals were allocated into five groups that were subjected to the following treatments: negative (untreated) control, positive control (arthritis-induced), arthritis+methotrexate, arthritis+quercetin, and arthritis+methotrexate+quercetin. Assessments of weight, oedema, joint damage, and cytokine production were used to determine the therapeutic effect of quercetin. This study demonstrated for the first time the anti-inflammatory and protective effects of quercetin in vivo in CIA. The results also showed that the concurrent administration of quercetin and methotrexate did not offer greater protection than the administration of a single agent. The use of quercetin as a monotherapeutic agent resulted in the lowest degree of joint inflammation and the highest protection. The reduced severity of the disease in animals treated with quercetin was associated with decreased levels of TNF-α, IL-1ß, IL-17, and MCP-1. In conclusion, this study determined that quercetin, which was non-toxic, produced better results than methotrexate for the protection of joints from arthritic inflammation in mice. Quercetin may be an alternative treatment for RA because it modulates the main pathogenic pathways of RA.
Assuntos
Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/tratamento farmacológico , Colágeno/farmacologia , Quercetina/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-17/metabolismo , Interleucina-1beta/metabolismo , Articulações/efeitos dos fármacos , Articulações/metabolismo , Metotrexato/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Substâncias Protetoras/farmacologia , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Type I interferons (IFNs) have been implicated in the initiation of islet autoimmunity and development of type 1 diabetes. To directly test their involvement, we generated NOD mice deficient in type I IFN receptors (NOD.IFNAR1(-/-)). Expression of the type I IFN-induced genes Mx1, Isg15, Ifit1, Oas1a, and Cxcr4 was detectable in NOD islets as early as 1 week of age. Of these five genes, expression of Isg15, Ifit1, Oas1a, and Mx1 peaked at 3-4 weeks of age, corresponding with an increase in Ifnα mRNA, declined at 5-6 weeks of age, and increased again at 10-14 weeks of age. Increased IFN-induced gene expression was ablated in NOD.IFNAR1(-/-) islets. Loss of Toll-like receptor 2 (TLR2) resulted in reduced islet expression of Mx1 at 2 weeks of age, but TLR2 or TLR9 deficiency did not change the expression of other IFN-induced genes in islets compared with wild-type NOD islets. We observed increased ß-cell major histocompatibility complex class I expression with age in NOD and NOD.IFNAR1(-/-) mice. NOD.IFNAR1(-/-) mice developed insulitis and diabetes at a similar rate to NOD controls. These results indicate type I IFN is produced within islets in young mice but is not essential for the initiation and progression of diabetes in NOD mice.
Assuntos
Diabetes Mellitus Tipo 1/etiologia , Interferon Tipo I/fisiologia , Ilhotas Pancreáticas/metabolismo , Transdução de Sinais/fisiologia , Animais , Expressão Gênica , Antígenos de Histocompatibilidade Classe I/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Receptor de Interferon alfa e beta/fisiologia , Receptor 2 Toll-Like/fisiologia , Receptor Toll-Like 9/fisiologiaRESUMO
Multiple Sclerosis (MS) is an autoimmune disease in which Central Nervous System (CNS) lesions result from perivascular immune cell infiltration associated with damage to myelin, oligodendrocytes and neurons. CNS autoimmunity and its regulation are dominated by the inflammatory cytokines IL17 and IFNγ, and the opposing regulatory cytokines IL10 and the type I IFNs. Toll-like receptors (TLR) play a critical role in modulating cytokine and chemokine secretion in response to exogenous Pathogen Associated to Molecular Patterns and endogenous Danger-Associated to Molecular Patterns. Here, we systematically examine the evidence that TLR play a major role in the initiation disease, the triggering of relapses, and regulation of CNS damage. Data from human studies are supported analyses of a variety of animal models, including Experimental Autoimmune Encephalomyelitis in TLR-deficient mice.
RESUMO
We assessed the production of the canonical Th2 cytokine IL-4 by NKT cells directly in vivo using IL-4-substituting strains of reporter mice that provide faithful and sensitive readouts of cytokine production without the confounding effects of in vitro stimulation. Analysis in naïve animals revealed an "innate" phase of IL-4 secretion that did not need to be triggered by administration of a known NKT cell ligand. This secretion was by immature NKT cells spanning Stage 1 of the maturation process in the thymus (CD4(+) CD44(lo) NK1.1(-) cells) and Stage 2 (CD4(+) CD44(hi) NK1.1(-) cells) in the spleen. Like ligand-induced IL-4 production by mature cells, this innate activity was independent of an initial source of IL-4 protein and did not require STAT6 signaling. A more sustained level of innate IL-4 production was observed in animals on a BALB/c background compared with a C57BL/6 background, suggesting a level of genetic regulation that may contribute to the "Th2-prone" phenotype in BALB/c animals. These observations indicate a regulated pattern of IL-4 expression by maturing NKT cells, which may endow these cells with a capacity to influence the development of surrounding cells in the thymus.