Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Med Image Anal ; 88: 102863, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37343323

RESUMO

Skin cancer is a major public health problem that could benefit from computer-aided diagnosis to reduce the burden of this common disease. Skin lesion segmentation from images is an important step toward achieving this goal. However, the presence of natural and artificial artifacts (e.g., hair and air bubbles), intrinsic factors (e.g., lesion shape and contrast), and variations in image acquisition conditions make skin lesion segmentation a challenging task. Recently, various researchers have explored the applicability of deep learning models to skin lesion segmentation. In this survey, we cross-examine 177 research papers that deal with deep learning-based segmentation of skin lesions. We analyze these works along several dimensions, including input data (datasets, preprocessing, and synthetic data generation), model design (architecture, modules, and losses), and evaluation aspects (data annotation requirements and segmentation performance). We discuss these dimensions both from the viewpoint of select seminal works, and from a systematic viewpoint, examining how those choices have influenced current trends, and how their limitations should be addressed. To facilitate comparisons, we summarize all examined works in a comprehensive table as well as an interactive table available online3.


Assuntos
Aprendizado Profundo , Dermatopatias , Neoplasias Cutâneas , Humanos , Redes Neurais de Computação , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/patologia , Diagnóstico por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos
2.
Comput Med Imaging Graph ; 102: 102127, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36257092

RESUMO

Supervised deep learning has become a standard approach to solving medical image segmentation tasks. However, serious difficulties in attaining pixel-level annotations for sufficiently large volumetric datasets in real-life applications have highlighted the critical need for alternative approaches, such as semi-supervised learning, where model training can leverage small expert-annotated datasets to enable learning from much larger datasets without laborious annotation. Most of the semi-supervised approaches combine expert annotations and machine-generated annotations with equal weights within deep model training, despite the latter annotations being relatively unreliable and likely to affect model optimization negatively. To overcome this, we propose an active learning approach that uses an example re-weighting strategy, where machine-annotated samples are weighted (i) based on the similarity of their gradient directions of descent to those of expert-annotated data, and (ii) based on the gradient magnitude of the last layer of the deep model. Specifically, we present an active learning strategy with a query function that enables the selection of reliable and more informative samples from machine-annotated batch data generated by a noisy teacher. When validated on clinical COVID-19 CT benchmark data, our method improved the performance of pneumonia infection segmentation compared to the state of the art.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , Imageamento Tridimensional/métodos , Aprendizado de Máquina Supervisionado , Tomografia Computadorizada por Raios X , Processamento de Imagem Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA