Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cell ; 185(19): 3638-3638.e1, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36113430

RESUMO

Cells are continuously exposed to tissue-specific extrinsic forces that are counteracted by cell-intrinsic force generation through the actomyosin cytoskeleton and alterations in the material properties of various cellular components, including the nucleus. Forces impact nuclei both directly through inducing deformation, which is sensed by various mechanosensitive components of the nucleus, as well as indirectly through the actomyosin cytoskeleton and mechanosensitive pathways activated in the cytoplasm. To view this SnapShot, open or download the PDF.


Assuntos
Actomiosina , Mecanotransdução Celular , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Mecanotransdução Celular/fisiologia
2.
Cell ; 181(3): 604-620.e22, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32259486

RESUMO

During embryonic and postnatal development, organs and tissues grow steadily to achieve their final size at the end of puberty. However, little is known about the cellular dynamics that mediate postnatal growth. By combining in vivo clonal lineage tracing, proliferation kinetics, single-cell transcriptomics, and in vitro micro-pattern experiments, we resolved the cellular dynamics taking place during postnatal skin epidermis expansion. Our data revealed that harmonious growth is engineered by a single population of developmental progenitors presenting a fixed fate imbalance of self-renewing divisions with an ever-decreasing proliferation rate. Single-cell RNA sequencing revealed that epidermal developmental progenitors form a more uniform population compared with adult stem and progenitor cells. Finally, we found that the spatial pattern of cell division orientation is dictated locally by the underlying collagen fiber orientation. Our results uncover a simple design principle of organ growth where progenitors and differentiated cells expand in harmony with their surrounding tissues.


Assuntos
Células Epidérmicas/metabolismo , Epiderme/crescimento & desenvolvimento , Pele/crescimento & desenvolvimento , Animais , Animais não Endogâmicos , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Linhagem da Célula/genética , Proliferação de Células/fisiologia , Células Cultivadas , Células Epidérmicas/patologia , Epiderme/metabolismo , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Células-Tronco/citologia
3.
Cell ; 181(4): 800-817.e22, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32302590

RESUMO

Tissue homeostasis requires maintenance of functional integrity under stress. A central source of stress is mechanical force that acts on cells, their nuclei, and chromatin, but how the genome is protected against mechanical stress is unclear. We show that mechanical stretch deforms the nucleus, which cells initially counteract via a calcium-dependent nuclear softening driven by loss of H3K9me3-marked heterochromatin. The resulting changes in chromatin rheology and architecture are required to insulate genetic material from mechanical force. Failure to mount this nuclear mechanoresponse results in DNA damage. Persistent, high-amplitude stretch induces supracellular alignment of tissue to redistribute mechanical energy before it reaches the nucleus. This tissue-scale mechanoadaptation functions through a separate pathway mediated by cell-cell contacts and allows cells/tissues to switch off nuclear mechanotransduction to restore initial chromatin state. Our work identifies an unconventional role of chromatin in altering its own mechanical state to maintain genome integrity in response to deformation.


Assuntos
Núcleo Celular/fisiologia , Heterocromatina/fisiologia , Mecanotransdução Celular/fisiologia , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromatina/fisiologia , Heterocromatina/metabolismo , Humanos , Masculino , Mecanorreceptores/fisiologia , Células-Tronco Mesenquimais , Camundongos , Estresse Mecânico
4.
Nature ; 623(7988): 828-835, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37968399

RESUMO

The skin epidermis is constantly renewed throughout life1,2. Disruption of the balance between renewal and differentiation can lead to uncontrolled growth and tumour initiation3. However, the ways in which oncogenic mutations affect the balance between renewal and differentiation and lead to clonal expansion, cell competition, tissue colonization and tumour development are unknown. Here, through multidisciplinary approaches that combine in vivo clonal analysis using intravital microscopy, single-cell analysis and functional analysis, we show how SmoM2-a constitutively active oncogenic mutant version of Smoothened (SMO) that induces the development of basal cell carcinoma-affects clonal competition and tumour initiation in real time. We found that expressing SmoM2 in the ear epidermis of mice induced clonal expansion together with tumour initiation and invasion. By contrast, expressing SmoM2 in the back-skin epidermis led to a clonal expansion that induced lateral cell competition without dermal invasion and tumour formation. Single-cell analysis showed that oncogene expression was associated with a cellular reprogramming of adult interfollicular cells into an embryonic hair follicle progenitor (EHFP) state in the ear but not in the back skin. Comparisons between the ear and the back skin revealed that the dermis has a very different composition in these two skin types, with increased stiffness and a denser collagen I network in the back skin. Decreasing the expression of collagen I in the back skin through treatment with collagenase, chronic UV exposure or natural ageing overcame the natural resistance of back-skin basal cells to undergoing EHFP reprogramming and tumour initiation after SmoM2 expression. Altogether, our study shows that the composition of the extracellular matrix regulates how susceptible different regions of the body are to tumour initiation and invasion.


Assuntos
Transformação Celular Neoplásica , Matriz Extracelular , Neoplasias Cutâneas , Microambiente Tumoral , Animais , Camundongos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Colágeno/metabolismo , Epiderme/patologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Neoplasias Cutâneas/patologia , Carcinoma Basocelular/patologia , Orelha/patologia , Colagenases/metabolismo , Envelhecimento , Raios Ultravioleta , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo
5.
EMBO J ; 41(17): e111650, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35899396

RESUMO

Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction-induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense mechanical load to activate this signaling have remained elusive. Here, we show that the upstream MAP3K ZAKß is activated by cellular compression induced by osmotic shock and cyclic compression in vitro, and muscle contraction in vivo. This function relies on ZAKß's ability to recognize stress fibers in cells and Z-discs in muscle fibers when mechanically perturbed. Consequently, ZAK-deficient mice present with skeletal muscle defects characterized by fibers with centralized nuclei and progressive adaptation towards a slower myosin profile. Our results highlight how cells in general respond to mechanical compressive load and how mechanical forces generated during muscle contraction are translated into MAP kinase signaling.


Assuntos
Proteínas Quinases Ativadas por Mitógeno , Músculo Esquelético , Animais , MAP Quinase Quinase Quinases , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Fosforilação , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética
6.
Development ; 150(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36930528

RESUMO

The Company of Biologists' 2022 workshop on 'Cell State Transitions: Approaches, Experimental Systems and Models' brought together an international and interdisciplinary team of investigators spanning the fields of cell and developmental biology, stem cell biology, physics, mathematics and engineering to tackle the question of how cells precisely navigate between distinct identities and do so in a dynamic manner. This second edition of the workshop was organized after a successful virtual workshop on the same topic that took place in 2021.


Assuntos
Células-Tronco , Congressos como Assunto , Biologia Celular , Biologia do Desenvolvimento
7.
J Cell Sci ; 131(15)2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-30030370

RESUMO

Endothelial integrity relies on a mechanical crosstalk between intercellular and cell-matrix interactions. This crosstalk is compromised in hemorrhagic vascular lesions of patients carrying loss-of-function mutations in cerebral cavernous malformation (CCM) genes. RhoA/ROCK-dependent cytoskeletal remodeling is central to the disease, as it causes unbalanced cell adhesion towards increased cell-extracellular matrix adhesions and destabilized cell-cell junctions. This study reveals that CCM proteins directly orchestrate ROCK1 and ROCK2 complementary roles on the mechanics of the endothelium. CCM proteins act as a scaffold, promoting ROCK2 interactions with VE-cadherin and limiting ROCK1 kinase activity. Loss of CCM1 (also known as KRIT1) produces excessive ROCK1-dependent actin stress fibers and destabilizes intercellular junctions. Silencing of ROCK1 but not ROCK2 restores the adhesive and mechanical homeostasis of CCM1 and CCM2-depleted endothelial monolayers, and rescues the cardiovascular defects of ccm1 mutant zebrafish embryos. Conversely, knocking down Rock2 but not Rock1 in wild-type zebrafish embryos generates defects reminiscent of the ccm1 mutant phenotypes. Our study uncovers the role of the CCM1-CCM2 complex in controlling ROCK1 and ROCK2 to preserve endothelial integrity and drive heart morphogenesis. Moreover, it solely identifies the ROCK1 isoform as a potential therapeutic target for the CCM disease.


Assuntos
Proteínas de Transporte/metabolismo , Células Endoteliais/metabolismo , Proteína KRIT1/metabolismo , Quinases Associadas a rho/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Western Blotting , Caderinas/genética , Caderinas/metabolismo , Proteínas de Transporte/genética , Bovinos , Células Endoteliais/citologia , Citometria de Fluxo , Imunofluorescência , Células Endoteliais da Veia Umbilical Humana , Humanos , Imunoprecipitação , Proteína KRIT1/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Peixe-Zebra , Quinases Associadas a rho/genética
8.
J Cell Sci ; 130(14): 2243-2250, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28646093

RESUMO

Cells are constantly subjected to a spectrum of mechanical cues, such as shear stress, compression, differential tissue rigidity and strain, to which they adapt by engaging mechanisms of mechanotransduction. While the central role of cell adhesion receptors in this process is established, it has only recently been appreciated that mechanical cues reach far beyond the plasma membrane and the cytoskeleton, and are directly transmitted to the nucleus. Furthermore, changes in the mechanical properties of the perinuclear cytoskeleton, nuclear lamina and chromatin are critical for cellular responses and adaptation to external mechanical cues. In that respect, dynamic changes in the nuclear lamina and the surrounding cytoskeleton modify mechanical properties of the nucleus, thereby protecting genetic material from damage. The importance of this mechanism is highlighted by debilitating genetic diseases, termed laminopathies, that result from impaired mechanoresistance of the nuclear lamina. What has been less evident, and represents one of the exciting emerging concepts, is that chromatin itself is an active rheological element of the nucleus, which undergoes dynamic changes upon application of force, thereby facilitating cellular adaption to differential force environments. This Review aims to highlight these emerging concepts by discussing the latest literature in this area and by proposing an integrative model of cytoskeletal and chromatin-mediated responses to mechanical stress.


Assuntos
Cromatina/metabolismo , Humanos , Modelos Biológicos , Estresse Mecânico
9.
Curr Opin Struct Biol ; 87: 102867, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38889500

RESUMO

Cell fate changes require rewiring of transcriptional programs to generate functionally specialized cell states. Reconfiguration of transcriptional networks requires overcoming epigenetic barriers imposed by silenced heterochromatin in order to activate lineage-specific genes. Further, cell fate decisions are made in a tissue-specific context, where cells are physically linked to each other as well as to the connective tissue environment. Here, cells are continuously exposed to a multitude of mechanical forces emanating from cellular dynamics in their local microenvironments, for example through cell movements, cell divisions, tissue contractions, or fluid flow. Through their ability to deform cellular structures and activate receptors, mechanical forces can be sensed at the plasma membrane, but also at the nuclear periphery through direct or cytoskeleton-mediated deformation of the nuclear envelope. This deformation and the associated signaling is capable of triggering changes in the mechanical state of the nuclear membranes, the organization and rigidity of the underlying nuclear lamina, compaction state of chromatin, and ultimately transcription. This review focuses on the role of nuclear architecture, particularly the nuclear lamina-chromatin interface, and its mechanical regulation in cell fate decisions as well as its physiological role in development and cellular reprogramming.

10.
Curr Opin Cell Biol ; 87: 102328, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38340567

RESUMO

Mammalian skin is a highly dynamic and regenerative organ that has long been recognized as a mechanically active composite of tissues withstanding daily compressive and tensile forces that arise from body movement. Importantly, cell- and tissue-scale mechanical signals are critical regulators of skin morphogenesis and homeostasis. These signals are sensed at the cellular periphery and transduced by mechanosensitive proteins within the plasma membrane to the cytoskeletal networks, and eventually into the nucleus to regulate chromatin organization and gene expression. The role of each of these nodes in producing a coherent mechanoresponse at both cell- and tissue-scales is emerging. Here we focus on the key cytoplasmic and nuclear mechanosensitive structures that are critical for the mammalian skin development and homeostatic maintenance. We propose that the mechanical state of the skin, in particular of its nuclear compartment, is a critical rheostat that fine-tunes developmental and homeostatic processes essential for the proper function of the organ.


Assuntos
Citoesqueleto , Mecanotransdução Celular , Animais , Mecanotransdução Celular/fisiologia , Citoplasma , Citoesqueleto/metabolismo , Membrana Celular , Células-Tronco , Núcleo Celular/metabolismo , Mamíferos
11.
Nat Cell Biol ; 26(2): 207-218, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38302719

RESUMO

Morphogenesis and cell state transitions must be coordinated in time and space to produce a functional tissue. An excellent paradigm to understand the coupling of these processes is mammalian hair follicle development, which is initiated by the formation of an epithelial invagination-termed placode-that coincides with the emergence of a designated hair follicle stem cell population. The mechanisms directing the deformation of the epithelium, cell state transitions and physical compartmentalization of the placode are unknown. Here we identify a key role for coordinated mechanical forces stemming from contractile, proliferative and proteolytic activities across the epithelial and mesenchymal compartments in generating the placode structure. A ring of fibroblast cells gradually wraps around the placode cells to generate centripetal contractile forces, which, in collaboration with polarized epithelial myosin activity, promote elongation and local tissue thickening. These mechanical stresses further enhance compartmentalization of Sox9 expression to promote stem cell positioning. Subsequently, proteolytic remodelling locally softens the basement membrane to facilitate a release of pressure on the placode, enabling localized cell divisions, tissue fluidification and epithelial invagination into the underlying mesenchyme. Together, our experiments and modelling identify dynamic cell shape transformations and tissue-scale mechanical cooperation as key factors for orchestrating organ formation.


Assuntos
Folículo Piloso , Mamíferos , Animais , Forma Celular , Epitélio , Morfogênese , Divisão Celular , Folículo Piloso/metabolismo
12.
Methods Mol Biol ; 2600: 291-296, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36587105

RESUMO

The advent of high-throughput sequencing techniques has revolutionized biological research. One such method is RNA sequencing, which has become a relatively affordable and routine method for quantifying and comparing gene expression changes over desired experimental conditions. Along with the popularity of the method, a myriad of user-friendly, open-source computational tools have also emerged for differential gene expression analyses. Correspondingly, decades of mechanobiology research have established that mechanical cues, both alone and/or in combination with biochemical signals, can be powerful regulators of transcriptional programs and consequently cell state/fate transitions. Thus, it has become possible to investigate both universal and specific temporally resolved transcriptional responses upon mechanical stimulation genome-wide. This chapter will describe methods to analyze transcriptional changes in response to extrinsic mechanical stretch.


Assuntos
Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Diferenciação Celular , Expressão Gênica , Análise de Sequência de RNA , Perfilação da Expressão Gênica/métodos
13.
Artigo em Inglês | MEDLINE | ID: mdl-34187806

RESUMO

Cells generate and sense mechanical forces that trigger biochemical signals to elicit cellular responses that control cell fate changes. Mechanical forces also physically distort neighboring cells and the surrounding connective tissue, which propagate mechanochemical signals over long distances to guide tissue patterning, organogenesis, and adult tissue homeostasis. As the largest and stiffest organelle, the nucleus is particularly sensitive to mechanical force and deformation. Nuclear responses to mechanical force include adaptations in chromatin architecture and transcriptional activity that trigger changes in cell state. These force-driven changes also influence the mechanical properties of chromatin and nuclei themselves to prevent aberrant alterations in nuclear shape and help maintain genome integrity. This review will discuss principles of nuclear mechanotransduction and chromatin mechanics and their role in DNA damage and cell fate regulation.


Assuntos
Núcleo Celular , Mecanotransdução Celular , Diferenciação Celular , Cromatina , Genoma , Mecanotransdução Celular/fisiologia
14.
Mol Biol Cell ; 32(18): 1724-1736, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34081532

RESUMO

The vascular system is precisely regulated to adjust blood flow to organismal demand, thereby guaranteeing adequate perfusion under varying physiological conditions. Mechanical forces, such as cyclic circumferential stretch, are among the critical stimuli that dynamically adjust vessel distribution and diameter, but the precise mechanisms of adaptation to changing forces are unclear. We find that endothelial monolayers respond to cyclic stretch by transient remodeling of the vascular endothelial cadherin-based adherens junctions and the associated actomyosin cytoskeleton. Time-resolved proteomic profiling reveals that this remodeling is driven by calcium influx through the mechanosensitive Piezo1 channel, triggering Rho activation to increase actomyosin contraction. As the mechanical stimulus persists, calcium signaling is attenuated through transient down-regulation of Piezo1 protein. At the same time, filamins are phosphorylated to increase monolayer stiffness, allowing mechanoadaptation to restore junctional integrity despite continuing exposure to stretch. Collectively, this study identifies a biphasic response to cyclic stretch, consisting of an initial calcium-driven junctional mechanoresponse, followed by mechanoadaptation facilitated by monolayer stiffening.


Assuntos
Citoesqueleto de Actina/metabolismo , Actomiosina , Antígenos CD/metabolismo , Caderinas/metabolismo , Sinalização do Cálcio , Mecanotransdução Celular , Actomiosina/metabolismo , Junções Aderentes/fisiologia , Antígenos CD/genética , Fenômenos Biomecânicos , Caderinas/genética , Calcimicina/farmacologia , Ionóforos de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Citocalasina D/farmacologia , Filaminas/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Fosfoproteínas/análise , Fosfoproteínas/metabolismo , Mapas de Interação de Proteínas , Quinases Ativadas por p21/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
15.
Nat Cell Biol ; 23(7): 771-781, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34239060

RESUMO

Tissue turnover requires activation and lineage commitment of tissue-resident stem cells (SCs). These processes are impacted by ageing, but the mechanisms remain unclear. Here, we addressed the mechanisms of ageing in murine hair follicle SCs (HFSCs) and observed a widespread reduction in chromatin accessibility in aged HFSCs, particularly at key self-renewal and differentiation genes, characterized by bivalent promoters occupied by active and repressive chromatin marks. Consistent with this, aged HFSCs showed reduced ability to activate bivalent genes for efficient self-renewal and differentiation. These defects were niche dependent as the transplantation of aged HFSCs into young recipients or synthetic niches restored SC functions. Mechanistically, the aged HFSC niche displayed widespread alterations in extracellular matrix composition and mechanics, resulting in mechanical stress and concomitant transcriptional repression to silence promoters. As a consequence, increasing basement membrane stiffness recapitulated age-related SC changes. These data identify niche mechanics as a central regulator of chromatin state, which, when altered, leads to age-dependent SC exhaustion.


Assuntos
Diferenciação Celular , Autorrenovação Celular , Senescência Celular , Montagem e Desmontagem da Cromatina , Folículo Piloso/fisiologia , Regiões Promotoras Genéticas , Nicho de Células-Tronco , Células-Tronco/fisiologia , Animais , Diferenciação Celular/genética , Linhagem da Célula , Autorrenovação Celular/genética , Células Cultivadas , Senescência Celular/genética , Matriz Extracelular/fisiologia , Inativação Gênica , Folículo Piloso/citologia , Folículo Piloso/metabolismo , Masculino , Mecanotransdução Celular , Camundongos Endogâmicos C57BL , Camundongos Knockout , Envelhecimento da Pele , Células-Tronco/metabolismo , Estresse Mecânico , Transcrição Gênica
16.
J Invest Dermatol ; 140(2): 284-290, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31326398

RESUMO

Tissue shape emerges from the collective mechanical properties and behavior of individual cells and the ways by which they integrate into the surrounding tissue. Tissue architecture and its dynamic changes subsequently feed back to guide cell behavior. The skin is a dynamic, self-renewing barrier that is subjected to large-scale extrinsic mechanical forces throughout its lifetime. The ability to withstand this constant mechanical stress without compromising its integrity as a barrier requires compartment-specific structural specialization and the capability to sense and adapt to mechanical cues. This review discusses the unique mechanical properties of the skin and the importance of signals that arise from mechanical communication between cells and their environment.


Assuntos
Mecanotransdução Celular , Fenômenos Fisiológicos da Pele , Pele/citologia , Animais , Humanos , Estresse Mecânico
17.
Curr Opin Genet Dev ; 55: 46-51, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31112907

RESUMO

The skin epidermis is a constantly renewing stratified epithelium that provides essential protective barrier functions throughout life. Epidermal stratification is governed by a step-wise differentiation program that requires precise spatiotemporal control of gene expression. How epidermal self-renewal and differentiation are regulated remains a fundamental open question. Cell-intrinsic and cell-extrinsic mechanisms that modify chromatin structure and interactions have been identified as key regulators of epidermal differentiation and stratification. Here, we will review the recent advances in our understanding of how chromatin modifiers, tissue-specific transcription factors, and force-induced nuclear remodeling processes function to shape chromatin and to control epidermal tissue development and homeostasis.


Assuntos
Diferenciação Celular , Núcleo Celular/genética , Montagem e Desmontagem da Cromatina/genética , Epiderme/fisiologia , Epigênese Genética , Regulação da Expressão Gênica , Homeostase , Animais , Humanos
19.
Nat Cell Biol ; 20(1): 69-80, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29230016

RESUMO

To establish and maintain organ structure and function, tissues need to balance stem cell proliferation and differentiation rates and coordinate cell fate with position. By quantifying and modelling tissue stress and deformation in the mammalian epidermis, we find that this balance is coordinated through local mechanical forces generated by cell division and delamination. Proliferation within the basal stem/progenitor layer, which displays features of a jammed, solid-like state, leads to crowding, thereby locally distorting cell shape and stress distribution. The resulting decrease in cortical tension and increased cell-cell adhesion trigger differentiation and subsequent delamination, reinstating basal cell layer density. After delamination, cells establish a high-tension state as they increase myosin II activity and convert to E-cadherin-dominated adhesion, thereby reinforcing the boundary between basal and suprabasal layers. Our results uncover how biomechanical signalling integrates single-cell behaviours to couple proliferation, cell fate and positioning to generate a multilayered tissue.


Assuntos
Caderinas/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Regulação da Expressão Gênica no Desenvolvimento , Mecanotransdução Celular , Miosina Tipo II/genética , Animais , Fenômenos Biomecânicos , Caderinas/metabolismo , Adesão Celular , Divisão Celular , Forma Celular , Embrião de Mamíferos , Células Epidérmicas/citologia , Células Epidérmicas/metabolismo , Epiderme/embriologia , Epiderme/metabolismo , Humanos , Microscopia Intravital , Camundongos , Camundongos Endogâmicos C57BL , Miosina Tipo II/metabolismo , Cultura Primária de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA