Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(19): 10547-10551, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33621416

RESUMO

The 90 kDa heat shock protein (Hsp90) is a molecular chaperone that processes nascent polypeptides into their biologically active conformations. Many of these proteins contribute to the progression of cancer, and consequently, inhibition of the Hsp90 protein folding machinery represents an innovative approach toward cancer chemotherapy. However, clinical trials with Hsp90 N-terminal inhibitors have encountered deleterious side effects and toxicities, which appear to result from the pan-inhibition of all four Hsp90 isoforms. Therefore, the development of isoform-selective Hsp90 inhibitors is sought to delineate the pathological role played by each isoform. Herein, we describe a structure-based approach that was used to design the first Hsp90α-selective inhibitors, which exhibit >50-fold selectivity versus other Hsp90 isoforms.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Neoplasias/metabolismo , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo
2.
Front Immunol ; 13: 1005045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341371

RESUMO

Response resistance to the immune checkpoint blockade (ICB) immunotherapy remains a major clinical challenge that may be overcome through the rational combination of ICB and specific targeted therapeutics. One emerging combination strategy is based on sensitizing ICB-refractory tumors with antagonists of 90kD heat shock protein (Hsp90) that target all four isoforms. However, pan-Hsp90 inhibitors are limited by the modest efficacy, on-target and off-tumor toxicities, and induction of the heat shock response (HSR) that overrides the effect of Hsp90 inhibition. Recently, we developed Hsp90ß-selective inhibitors that were cytotoxic to cancer cells but did not induce HSR in vitro. Here, we report that the Hsp90ß inhibitor NDNB1182 downregulated CDK4 (an Hsp90ß-dependent client protein) and induced the expression of endogenous retroviral elements and interferon-stimulated genes. In syngeneic mouse models of prostate cancer and breast cancer, NDNB1182 significantly augmented the efficacy of ICB therapy. Furthermore, NDNB1182 showed superior tolerability to the pan-Hsp90 inhibitor Ganetespib in mice. Our findings provide evidence that Hsp90ß inhibition is a potentially effective and safe regimen to combine with ICB to treat immunotherapy-refractory solid tumors.


Assuntos
Antineoplásicos , Neoplasias da Próstata , Humanos , Masculino , Camundongos , Animais , Inibidores de Checkpoint Imunológico , Interferons , Proteínas de Choque Térmico HSP90/genética
3.
ACS Med Chem Lett ; 13(12): 1870-1878, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36518703

RESUMO

The heat shock protein 90 (Hsp90) family of molecular chaperones mediates the folding and activation of client proteins associated with all 10 hallmarks of cancer. Herein, the design, synthesis, and biological validation of Hsp90α-selective inhibitors that contain a tertiary alcohol are reported. Forty-one analogues were synthesized to modulate hydrogen-bonding interactions and to probe for steric and hydrophobic interactions within the Hsp90α binding site. Cocrystal structures of lead compound 23d (IC50 = 0.25 µM, 15-fold selective vs Hsp90ß) and a 5-fluoroisoindoline derivative (KUNA-111) revealed a novel binding mode that induced conformational changes within Hsp90α's N-terminal domain. The lead Hsp90α-selective inhibitors did not manifest significant antiproliferative activity, but they did result in selective and dose-dependent degradation of Hsp90α clients in the cellular environment. Additional studies will be sought to determine the effects of the novel conformational change induced by 23d.

4.
J Med Chem ; 64(3): 1545-1557, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33428418

RESUMO

The 90 kD heat shock proteins (Hsp90) are molecular chaperones that are responsible for the folding of select proteins, many of which are directly associated with cancer progression. Consequently, inhibition of the Hsp90 protein folding machinery results in a combinatorial attack on numerous oncogenic pathways. Seventeen small-molecule inhibitors of Hsp90 have entered clinical trials for the treatment of cancer, all of which bind the Hsp90 N-terminus and exhibit pan-inhibitory activity against all four Hsp90 isoforms, which may lead to adverse effects. The development of Hsp90 isoform-selective inhibitors represents an alternative approach toward the treatment of cancer and may limit some of these detriments. Described herein, is a structure-based approach to develop isoform-selective inhibitors of Hsp90ß, which induces the degradation of select Hsp90 clients without concomitant induction of Hsp90 levels. Together, these initial studies support the development of Hsp90ß-selective inhibitors as a method for overcoming the detriments associated with pan-inhibition.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inativação Gênica , Proteínas de Choque Térmico HSP90/genética , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Modelos Moleculares , Conformação Molecular , Neoplasias/tratamento farmacológico , Dobramento de Proteína , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Especificidade por Substrato , Neoplasias da Bexiga Urinária/tratamento farmacológico
5.
Nat Commun ; 9(1): 425, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382832

RESUMO

The 90 kDa heat shock protein (Hsp90) is a molecular chaperone responsible for folding proteins that are directly associated with cancer progression. Consequently, inhibition of the Hsp90 protein folding machinery results in a combinatorial attack on numerous oncogenic pathways. Seventeen small-molecule inhibitors of Hsp90 have entered clinical trials, all of which bind the Hsp90 N-terminus and exhibit pan-inhibitory activity against all four Hsp90 isoforms. pan-Inhibition of Hsp90 appears to be detrimental as toxicities have been reported alongside induction of the pro-survival heat shock response. The development of Hsp90 isoform-selective inhibitors represents an alternative approach towards the treatment of cancer that may limit some of the detriments. Described herein is a structure-based approach to design isoform-selective inhibitors of Hsp90ß, which induces the degradation of select Hsp90 clients without concomitant induction of Hsp90 levels. Together, these initial studies support the development of Hsp90ß-selective inhibitors as a method to overcome the detriments associated with pan-inhibition.


Assuntos
Antineoplásicos/química , Desenho de Fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Ligação de Hidrogênio , Isoformas de Proteínas , Relação Estrutura-Atividade
6.
ACS Chem Biol ; 12(1): 244-253, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27959508

RESUMO

Glucose regulated protein 94 kDa, Grp94, is the endoplasmic reticulum (ER) localized isoform of heat shock protein 90 (Hsp90) that is responsible for the trafficking and maturation of toll-like receptors, immunoglobulins, and integrins. As a result, Grp94 has emerged as a therapeutic target to disrupt cellular communication, adhesion, and tumor proliferation, potentially with fewer side effects compared to pan-inhibitors of all Hsp90 isoforms. Although, the N-terminal ATP binding site is highly conserved among all four Hsp90 isoforms, recent cocrystal structures of Grp94 have revealed subtle differences between Grp94 and other Hsp90 isoforms that has been exploited for the development of Grp94-selective inhibitors. In the current study, a structure-based approach has been applied to a Grp94 nonselective compound, SNX 2112, which led to the development of 8j (ACO1), a Grp94-selective inhibitor that manifests ∼440 nM affinity and >200-fold selectivity against cytosolic Hsp90 isoforms.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Glicoproteínas de Membrana/antagonistas & inibidores , ortoaminobenzoatos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Benzoquinonas/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Proteínas do Olho/química , Proteínas do Olho/genética , Glicoproteínas/química , Glicoproteínas/genética , Proteínas de Choque Térmico HSP90/química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Lactamas Macrocíclicas/farmacologia , Glicoproteínas de Membrana/química , Modelos Moleculares , Conformação Molecular , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Relação Estrutura-Atividade , ortoaminobenzoatos/síntese química , ortoaminobenzoatos/química
7.
Sci Rep ; 7(1): 17951, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29263415

RESUMO

The heat shock protein 90 (Hsp90) family of molecular chaperones regulates protein homeostasis, folding, and degradation. The ER-resident Hsp90 isoform, glucose-regulated protein 94 (Grp94), promotes the aggregation of mutant forms of myocilin, a protein associated with primary open-angle glaucoma. While inhibition of Grp94 promotes the degradation of mutant myocilin in vitro, to date no Grp94-selective inhibitors have been investigated in vivo. Here, a Grp94-selective inhibitor facilitated mutant myocilin degradation and rescued phenotypes in a transgenic mouse model of hereditary primary open-angle glaucoma. Ocular toxicities previously associated with pan-Hsp90 inhibitors were not evident with our Grp94-selective inhibitor, 4-Br-BnIm. Our study suggests that selective inhibition of a distinct Hsp90 family member holds translational promise for ocular and other diseases associated with cell stress and protein misfolding.


Assuntos
Glaucoma de Ângulo Aberto/tratamento farmacológico , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Glicoproteínas de Membrana/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA