Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928227

RESUMO

Glutamate is the main excitatory neurotransmitter in the brain wherein it controls cognitive functional domains and mood. Indeed, brain areas involved in memory formation and consolidation as well as in fear and emotional processing, such as the hippocampus, prefrontal cortex, and amygdala, are predominantly glutamatergic. To ensure the physiological activity of the brain, glutamatergic transmission is finely tuned at synaptic sites. Disruption of the mechanisms responsible for glutamate homeostasis may result in the accumulation of excessive glutamate levels, which in turn leads to increased calcium levels, mitochondrial abnormalities, oxidative stress, and eventually cell atrophy and death. This condition is known as glutamate-induced excitotoxicity and is considered as a pathogenic mechanism in several diseases of the central nervous system, including neurodevelopmental, substance abuse, and psychiatric disorders. On the other hand, these disorders share neuroplasticity impairments in glutamatergic brain areas, which are accompanied by structural remodeling of glutamatergic neurons. In the current narrative review, we will summarize the role of glutamate-induced excitotoxicity in both the pathophysiology and therapeutic interventions of neurodevelopmental and adult mental diseases with a focus on autism spectrum disorders, substance abuse, and psychiatric disorders. Indeed, glutamatergic drugs are under preclinical and clinical development for the treatment of different mental diseases that share glutamatergic neuroplasticity dysfunctions. Although clinical evidence is still limited and more studies are required, the regulation of glutamate homeostasis is attracting attention as a potential crucial target for the control of brain diseases.


Assuntos
Ácido Glutâmico , Transtornos Mentais , Humanos , Ácido Glutâmico/metabolismo , Transtornos Mentais/metabolismo , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/etiologia , Animais , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/etiologia , Plasticidade Neuronal , Encéfalo/metabolismo , Encéfalo/patologia , Adulto , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Transtorno do Espectro Autista/metabolismo
2.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675068

RESUMO

Stress is a key risk factor in the onset of neuropsychiatric disorders. The study of the mechanisms underlying stress response is important to understand the etiopathogenetic mechanisms and identify new putative therapeutic targets. In this context, microRNAs (miRNAs) have emerged as key regulators of the complex patterns of gene/protein expression changes in the brain, where they have a crucial role in the regulation of neuroplasticity, neurogenesis, and neuronal differentiation. Among them, miR-135a-5p has been associated with stress response, synaptic plasticity, and the antidepressant effect in different brain areas. Here, we used acute unavoidable foot-shock stress (FS) and chronic mild stress (CMS) on male rats to study whether miR-135a-5p was involved in stress-induced changes in the prefrontal cortex (PFC). Both acute and chronic stress decreased miR-135a-5p levels in the PFC, although after CMS the reduction was induced only in animals vulnerable to CMS, according to a sucrose preference test. MiR-135a-5p downregulation in the primary neurons reduced dendritic spine density, while its overexpression exerted the opposite effect. Two bioinformatically predicted target genes, Kif5c and Cplx1/2, were increased in FS rats 24 h after stress. Altogether, we found that miR-135a-5p might play a role in stress response in PFC involving synaptic mechanisms.


Assuntos
MicroRNAs , Córtex Pré-Frontal , Estresse Fisiológico , Estresse Psicológico , Animais , Masculino , Ratos , Regulação para Baixo/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/fisiologia , Doença Aguda/psicologia , Doença Crônica/psicologia , Estresse Fisiológico/genética , Estresse Psicológico/genética , Estresse Psicológico/psicologia , Sinapses/genética , Sinapses/metabolismo , Sinapses/patologia , Espinhas Dendríticas/genética , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia
3.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445990

RESUMO

Stress is a primary risk factor in the onset of neuropsychiatric disorders, including major depressive disorder (MDD). We have previously used the chronic mild stress (CMS) model of depression in male rats to show that CMS induces morphological, functional, and molecular changes in the hippocampus of vulnerable animals, the majority of which were recovered using acute subanesthetic ketamine in just 24 h. Here, we focused our attention on the medial prefrontal cortex (mPFC), a brain area regulating emotional and cognitive functions, and asked whether vulnerability/resilience to CMS and ketamine antidepressant effects were associated with molecular and functional changes in the mPFC of rats. We found that most alterations induced by CMS in the mPFC were selectively observed in stress-vulnerable animals and were rescued by acute subanesthetic ketamine, while others were found only in resilient animals or were induced by ketamine treatment. Importantly, only a few of these modifications were also previously demonstrated in the hippocampus, while most are specific to mPFC. Overall, our results suggest that acute antidepressant ketamine rescues brain-area-specific glutamatergic changes induced by chronic stress.


Assuntos
Transtorno Depressivo Maior , Ketamina , Ratos , Masculino , Animais , Ketamina/farmacologia , Ketamina/uso terapêutico , Depressão/tratamento farmacológico , Depressão/etiologia , Transtorno Depressivo Maior/tratamento farmacológico , Estresse Psicológico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Córtex Pré-Frontal
4.
Molecules ; 27(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35011254

RESUMO

Chronic stress is the key factor contributing to the development of depressive symptoms. Chronic restraint stress (CRS) is well validated and is one of the most commonly used models to induce depressive-like behavior in rodents. The present study aimed to evaluate whether fluoxetine (FLU 5 mg/kg) and zinc (Zn 10mg/kg) given simultaneously induce a more pronounced antidepressant-like effect in the CRS model than both those compounds given alone. Behavioral assessment was performed using the tail suspension and splash tests (TST and ST, respectively). Furthermore, the effects of CRS, FLU and Zn given alone and combined treatment with FLU + Zn on the expression of proteins involved in the apoptotic, inflammatory, and epigenetic processes were evaluated in selected brain structures (prefrontal cortex, PFC; and hippocampus, Hp) using Western blot analysis or enzyme-linked immunosorbent assays (ELISA). The results obtained indicated that three hours (per day) of immobilization for 4 weeks induced prominent depressive symptoms that manifested as increased immobility time in the TST, as well as decreased number and grooming time in the ST. Behavioral changes induced by CRS were reversed by both FLU (5 and 10 mg/kg) or Zn (10 mg/kg). Zinc supplementation (10 mg/kg) slightly increases the effectiveness of FLU (5 mg/kg) in the TST. However, it significantly increased the activity of FLU in the ST compared to the effect induced by FLU and Zn alone. Biochemical studies revealed that neither CRS nor FLU and Zn given alone or in combined treatment alter the expression of proteins involved in apoptotic or inflammatory processes. CRS induced major alterations in histone deacetylase (HDAC) levels by increasing the level of HADC1 and decreasing the level of HADC4 in the PFC and Hp, decreasing the level of HADC6 in the PFC but increasing it in Hp. Interestingly, FLU + Zn treatment reversed CRS-induced changes in HDAC levels in the Hp, indicating that HDAC modulation is linked to FLU + Zn treatment and this effect is structure-specific.


Assuntos
Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Fluoxetina/farmacologia , Histona Desacetilases/metabolismo , Zinco/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Elevação dos Membros Posteriores , Humanos , Masculino , Camundongos Endogâmicos C57BL , Piroptose , Estresse Psicológico/metabolismo
5.
Metab Brain Dis ; 32(1): 97-103, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27502410

RESUMO

Despite many clinical trials assessing the role of zinc in major depressive disorder (MDD), the conclusions still remain ambiguous. The aim of the present clinical study was to determine and comparison the zinc concentration in the blood of MDD patients (active stage or remission) and healthy volunteers (controls), as well as to discuss its potential clinical usefulness as a biomarker of the disease. In this study 69 patients with current depressive episode, 45 patients in remission and 50 controls were enrolled. The zinc concentration was measured by electrothermal atomic absorption spectrometry (ET AAS). The obtained results revealed, that the zinc concentration in depressed phase were statistically lower than in the healthy volunteers [0.89 vs. 1.06 mg/L, respectively], while the zinc level in patients achieve remission was not significantly different from the controls [1.07 vs. 1.06 mg/L, respectively]. Additionally, among the patients achieve remission a significant differences in zinc concentration between group with and without presence of drug-resistance in the previous episode of depression were observed. Also, patients in remission demonstrated correlation between zinc level and the average number of depressive episodes in the last year. Serum zinc concentration was not dependent on atypical features of depression, presence of psychotic symptoms or melancholic syndrome, age, age of onset or duration of disease, number of episodes in the life time, duration of the episode/remission and severity of depression measured by the Hamilton Rating Scale for Depression (HDRS), and the Montgomery-Asberg Depression Rating Scale (MADRS). Concluding, our findings confirm the correlation between zinc deficit present in the depressive episode, and are consistent with the majority of previous studies. These results may also indicate that serum zinc concentration might be considered as a potential biological marker of MDD.


Assuntos
Transtorno Depressivo Maior/diagnóstico , Zinco/sangue , Adulto , Biomarcadores/sangue , Transtorno Depressivo Maior/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Escalas de Graduação Psiquiátrica , Índice de Gravidade de Doença
6.
Neuropsychobiology ; 73(2): 116-22, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27023678

RESUMO

BACKGROUND: Lowered antioxidant defense systems and increased oxidative stress are implicated in bipolar disorders (BD). Early and late stages of BD may present different biological features (including the level of oxidative stress) and may therefore require different treatment strategies. The aim of this study was to analyze serum levels of lipid peroxidation [measured as thiobarbituric acid-reactive substances (TBARS), a derivative of malondialdehyde] in BD patients at various stages and phases of the illness and compare their TBARS levels with those of healthy controls. METHOD: A total of 129 patients (58 in the depressive episode, 23 in the manic episode and 48 in remission) diagnosed with type I (n = 69) or type II (n = 60) BD and 50 healthy volunteers (control group) were enrolled in the study. The level of lipid peroxidation was measured in blood serum using a TBARS assay kit. RESULTS: TBARS levels in the acute episode of mania/hypomania and depression (but not in remission) were significantly higher than in healthy controls. With regard to the BD stage, both early- and late-stage BD TBARS levels were significantly increased in patients in the depressive episode. In late-stage BD, the TBARS level in patients in remission remained elevated compared with controls. A multiple regression model confirmed the association between the TBARS level and BD stage or acute BD. CONCLUSION: Our findings indicate that TBARS levels reflect the oxidative stress state which increases both in the acute phase of BD (mania/hypomania and depression) and with BD progression (stage).


Assuntos
Transtorno Bipolar/sangue , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Doença Aguda , Adulto , Análise de Variância , Transtorno Bipolar/tratamento farmacológico , Análise Química do Sangue , Doença Crônica , Progressão da Doença , Feminino , Humanos , Peroxidação de Lipídeos/fisiologia , Masculino , Escalas de Graduação Psiquiátrica , Análise de Regressão
7.
Int J Neuropsychopharmacol ; 17(11): 1763-75, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24946016

RESUMO

The effect of stress on the mRNA and protein level of the 5-HT1A receptor and two of its key transcriptional modulators, NUDR and Freud-1, was examined in the prefrontal cortex (PFC) and hippocampus (Hp) using rodent models: olfactory bulbectomy (OB) and prenatal stress (PS) in male and female rats; chronic mild stress in male rats (CMS) and pregnancy stress. In PFC, CMS induced the most widespread changes, with significant reduction in both mRNA and protein levels of NUDR, 5-HT1A receptor and in Freud-1 mRNA; while in Hp 5-HT1A receptor and Freud-1 protein levels were also decreased. In male, but not female OB rats PFC Freud-1 and 5-HT1A receptor protein levels were reduced, while in Hp 5-HT1A receptor, Freud-1 and NUDR mRNA's but not protein were reduced. In PS rats PFC 5-HT1A receptor protein was reduced more in females than males; while in Hp Freud-1 protein was increased in females. In pregnancy stress, PFC NUDR, Freud-1 and 5-HT1A protein receptor levels were reduced, and in HP 5-HT1A receptor protein levels were also reduced; in HP only NUDR and Freud-1 mRNA levels were reduced. Overall, CMS and stress during pregnancy produced the most salient changes in 5-HT1A receptor and transcription factor expression, suggesting a primary role for altered transcription factor expression in chronic regulation of 5-HT1A receptor expression. By contrast, OB (in males) and PS (in females) produced gender-specific reductions in PFC 5-HT1A receptor protein levels, suggesting a role for post-transcriptional regulation. These and previous data suggest that chronic stress might be a key regulator of NUDR/Freud-1 gene expression.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas Nucleares/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Proteínas Repressoras/metabolismo , Estresse Psicológico/patologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Proteínas Nucleares/genética , Bulbo Olfatório/cirurgia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , RNA Mensageiro/metabolismo , Ratos , Receptor 5-HT1A de Serotonina/genética , Proteínas Repressoras/genética , Fatores Sexuais , Estresse Psicológico/etiologia , Fatores de Transcrição
8.
Neuropeptides ; 104: 102409, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38244260

RESUMO

N-methyl-D-aspartic acid receptors (NMDARs) are the most studied receptors in mammalian brains. Their role in depression, cognition, schizophrenia, learning and memorization, Alzheimer's disease, and more is well documented. In the search for new drug candidates in depression, intensive studies have been conducted. Compounds that act by influencing NMDARs have been particularly intensively investigated following the success of ketamine in clinics. Unfortunately, the side effects associated with ketamine do not allow it to be useful in all cases. Therefore, it is important to learn about new unknown mechanisms related to NMDAR activation and study the impact of changes in the excitatory synapse environment on this receptor. Both direct and intermediary influence on NMDARs via mGluRs and COX-2 are effective. Our prior studies showed that both mGluRs ligands and COX-2 inhibitors are potent in depression-like and cognitive studies through mutual interactions. The side effects associated with imipramine administration, e.g., memory impairment, were improved when inhibiting COX-2. Therefore, this study is a trial that involves searching for modifications in NMDARs in mouse brains after prolonged treatment with MTEP (mGluR5 antagonist), NS398 (COX-2 inhibitor), or imipramine (tricyclic antidepressant). The prefrontal cortex (PFC) and hippocampus (HC) were selected for PCR and Western blot analyses. Altered expression of Gin2a or Grin2b genes after treatment was found. The observed effects were more potent when COX-2 was inhibited. The finding described here may be vital when searching for new drugs acting via NMDARs without the side effects related to cognition.


Assuntos
Ketamina , Camundongos , Animais , Ciclo-Oxigenase 2/metabolismo , Ketamina/farmacologia , Imipramina/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Hipocampo , Mamíferos/metabolismo
9.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38931429

RESUMO

Growing evidence suggests that activators of nuclear factor erythroid-derived 2-like 2 (Nrf2), such as sulforaphane, may represent promising novel pharmacological targets for conditions related to oxidative stress, including depressive disorder. Therefore, we conducted a study to explore the behavioral and biochemical effects of repeated (14 days) sulforaphane (SFN) treatment in the olfactory bulbectomy (OB) animal model of depression. An open field test (OFT), splash test (ST), and spontaneous locomotor activity test (LA) were used to assess changes in depressive-like behavior and the potential antidepressant-like activity of SFN. The OB model induced hyperactivity in mice during the OFT and LA as well as a temporary loss of self-care and motivation in the ST. The repeated administration of SFN (10 mg/kg) effectively reversed these behavioral changes in OB mice across all tests. Additionally, a biochemical analysis revealed that SFN (10 mg/kg) increased the total antioxidant capacity in the frontal cortex and serum of the OB model. Furthermore, SFN (10 mg/kg) significantly enhanced superoxide dismutase activity in the serum of OB mice. Overall, the present study is the first to demonstrate the antidepressant-like effects of repeated SFN (10 mg/kg) treatment in the OB model and indicates that these benefits may be linked to improved oxidative status.

10.
Steroids ; 207: 109438, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723842

RESUMO

To elucidate the effect of cyclooxygenase-2 (COX-2) inhibition on corticosterone release, mice were divided into a group receiving NS398, a selective COX-2 inhibitor at a dose of 3 mg/kg for seven days, and a group receiving NS398 for fourteen days. After this time, the mice were sacrificed, and blood serum was collected. An ELISA protocol was used to analyze serum corticosterone levels. Short-term COX-2 inhibition increased corticosterone levels, while long-term inhibition lowered them. The exact schedule of experiments was repeated after the lipopolysaccharide (LPS) Escherichia coli challenge in mice to check the influence of stress stimuli on the tested parameters. In this case, we observed increases in corticosterone levels, significant in a seven-day pattern. These results indicate that corticosterone levels are regulated through a COX-2-dependent mechanism in mice.


Assuntos
Corticosterona , Inibidores de Ciclo-Oxigenase 2 , Ciclo-Oxigenase 2 , Lipopolissacarídeos , Nitrobenzenos , Sulfonamidas , Animais , Camundongos , Corticosterona/sangue , Inibidores de Ciclo-Oxigenase 2/farmacologia , Nitrobenzenos/farmacologia , Sulfonamidas/farmacologia , Lipopolissacarídeos/farmacologia , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/sangue , Masculino , Fatores de Tempo
11.
Neuropeptides ; 100: 102347, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37182274

RESUMO

The strength and quality of the signal propagated by the glutamate synapse (Glu) depend, among other things, on the structure of the postsynaptic part and the quality of adhesion between the interacting components of the synapse. Postsynaptic density protein 95 (PSD95), mammalian target of rapamycin (mTOR), and Down syndrome cell adhesion molecule (DSCAM) are components of the proper functioning of an excitatory synapse. PSD95 is a member of the membrane-associated guanylate kinases protein family, mainly located at the postsynaptic density of the excitatory synapse. PSD95, via direct interaction, regulates the clustering and functionality of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartic acid (NMDA) receptors at a synapse. Here, the effects of treatment with an antagonist of mGluR5 (MTEP) and NS398 (cyclooxygenase-2, COX-2 inhibitor) on PSD95, mTOR, and DSCAM in the hippocampus (HC) of C57B1/6 J mice using Western blots in the context of learning were examined. Moreover, the sensitivity of selected proteins to lipopolysaccharide (LPS) was monitored. MTEP injected for seven days induced upregulation of PSD95 in HC of mice. The observed effect was regulated by a COX-2 inhibitor and concurrently by LPS. Accompanying alterations in DSCAM protein were found, suggesting changes in adhesion strength after modulation of glutamatergic (Glu) synapse via tested compounds.


Assuntos
Síndrome de Down , Receptores de Glutamato Metabotrópico , Camundongos , Animais , Proteína 4 Homóloga a Disks-Large/metabolismo , Lipopolissacarídeos/farmacologia , Memória de Curto Prazo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/metabolismo , Síndrome de Down/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Hipocampo/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Moléculas de Adesão Celular/metabolismo , Mamíferos/metabolismo
12.
Neuropharmacology ; 241: 109729, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37797736

RESUMO

In the search for new options for the pharmacological treatment of major depressive disorder, compounds with a rapid onset of action and high efficacy but lacking a psychotomimetic effect are of particular interest. In the present study, we evaluated the antidepressant potential of NitroSynapsin (NS) at behavioural, structural, and functional levels. NS is a memantine derivative and a dual allosteric N-methyl-d-aspartate receptors (NMDAR) antagonist using targeted delivery by the aminoadamantane of a warhead nitro group to inhibitory redox sites on the NMDAR. In a chronic restraint stress (CRS) mouse model of depression, five doses of NS administered on three consecutive days evoked antidepressant-like activity in the chronically stressed male C57BL/6J mice, reversing CRS-induced behavioural disturbances in sucrose preference and tail suspension tests. CRS-induced changes in morphology and density of dendritic spines in cerebrocortical neurons in the medial prefrontal cortex (mPFC) were also reversed by NS. Moreover, CRS-induced reduction in long-term potentiation (LTP) in the mPFC was found to be prevented by NS based on the electrophysiological recordings. Our study showed that NS restores structural and functional synaptic plasticity and reduces depressive behaviour to the level found in naïve animals. These results preliminarily revealed an antidepressant-like potency of NS.


Assuntos
Depressão , Transtorno Depressivo Maior , Camundongos , Animais , Masculino , Depressão/tratamento farmacológico , Córtex Pré-Frontal , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Modelos Animais de Doenças , Receptores de N-Metil-D-Aspartato/metabolismo
13.
Curr Neuropharmacol ; 20(12): 2267-2291, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35105292

RESUMO

Major depressive disorder (MDD) is a debilitating psychiatric disorder, the third leading global cause of disability. Regarding aetiopathogenetic mechanisms involved in the onset of depressive disorders, the interaction between genetic vulnerability traits and environmental factors is believed to play a major role. Although much is still to be elucidated about the mechanisms through which the environment can interact with genetic background shaping the disease risk, there is a general agreement about a key role of epigenetic marking. In this narrative review, we focused on the association between changes in DNA methylation patterns and MDD or depressive-like phenotype in animal models, as well as mechanisms of response to antidepressant drugs. We discussed studies presenting DNA methylation changes at specific genes of interest and profiling analyses in both patients and animal models of depression. Overall, we collected evidence showing that DNA methylation could not only be considered as a promising epigenetic biomarker of pathology but could also help in predicting antidepressant treatment efficacy. Finally, we discussed the hypothesis that specific changes in DNA methylation signature could play a role in aetiopathogenetic processes as well as in the induction of antidepressant effect.


Assuntos
Depressão , Transtorno Depressivo Maior , Animais , Depressão/genética , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/genética , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Fenótipo , Biomarcadores , DNA , Epigênese Genética
14.
Nutrients ; 14(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35807926

RESUMO

Currently used antidepressants do not always provide the desired results, and many patients suffer from treatment-resistant depression. Clinical studies suggest that zinc deficiency (ZnD) may be an important risk factor for depression and might blunt the effect of antidepressants. This study aimed to examine whether ZnD might blunt the effectiveness of antidepressants in the olfactory bulbectomy model (OB) of depression in rats. For this purpose, rats were subjected to the OB model, fed a zinc-deficient diet (3 mg Zn/kg) for 3 weeks, and finally treated with escitalopram (Esc), venlafaxine (Ven) 10 mg/kg, i.p., or combined Esc/Ven (1 mg/kg, i.p.) with zinc (5 mg/kg) for another 3 weeks. Open field (OFT), forced swim (FST), and sucrose intake (SIT) tests were used to evaluate depressive-like behavioral changes. In addition, serum, intracellular, and synaptic Zn concentrations and the level of zinc transporter (ZnT) proteins were analyzed. The OB + ZnD model induced hyperactivity in rats in the OFT, increased immobility time in the FST, and anhedonia in the SIT. Chronic treatment with Esc reduced immobility time in the FST in the OB + ZnD model. Esc/Ven +Zn increased sucrose intake in rats from the OB + ZnD group. The OB + ZnD decreased serum zinc levels and intracellular and synaptic Zn concentration in the prefrontal cortex (PFC) and cerebellum. These changes were normalized by chronic administration of Esc/Ven +Zn. Moreover, OB + ZnD decreased levels of the ZnT1 protein in the PFC and Hp and ZnT3 in Hp. Chronic administration of antidepressants did not alter the levels of ZnT proteins. The OB + ZnD model induces more depressive-like effects than either model alone. Our results show that ZnD may induce drug resistance in rats. Normalizing serum or brain zinc concentration is insufficient to reverse behavioral abnormalities caused by the OB + ZnD model. However, zinc supplementation might improve the effectiveness of antidepressants in reversing particular depression symptoms.


Assuntos
Antidepressivos , Depressão , Animais , Antidepressivos/farmacologia , Encéfalo/metabolismo , Depressão/tratamento farmacológico , Depressão/etiologia , Modelos Animais de Doenças , Ratos , Sacarose , Zinco
15.
Front Pharmacol ; 13: 933364, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091748

RESUMO

Clinical and preclinical studies show evidence that chronic stress or nutritional deficits in dietary zinc (Zn) intake may be risk factors for developing major depressive disorder (MDD). Furthermore, there may be possible links between low serum Zn levels and development of treatment-resistant depression. In the present work, we combined chronic restraint stress (CRS) and a low-zinc diet (ZnD) in mice and carried out a set of behavioral and biochemical studies. The mice were treated with four different antidepressant compounds, namely, ketamine, Ro 25-6981 (Ro), hyperforin and lanicemine (Hyp + Lan), and imipramine (IMI). We show that CRS or ZnD alone or a combination of CRS and ZnD (CRS + ZnD) induces anhedonia observed in the sucrose preference test (SPT). The behavioral effects of CRS were restored by ketamine or IMI. However, only Hyp + Lan restored the deficits in behavioral phenotype in mice subjected to CRS + ZnD. We also showed that the antidepressant-like effects observed in Hyp + Lan-treated CRS + ZnD mice were associated with changes in the morphology of the dendritic spines (restored physiological level) in the hippocampus (Hp). Finally, we studied the metabolism of ketamine and its brain absorption in CRS and CRS + ZnD mice. Our results suggest that CRS + ZnD does not alter the metabolism of ketamine to (2R,6R;2S,6S)-HNK; however, CRS + ZnD can induce altered bioavailability and distribution of ketamine in the Hp and frontal cortex (FC) in CRS + ZnD animals compared to the control and CRS groups.

16.
Neurotox Res ; 39(2): 170-181, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33400178

RESUMO

Suberoylanilide hydroxamic acid (SAHA/Vorinostat), a potent inhibitor of histone deacetylases (HDACs), is known to possess antidepressant properties. However, the exact mechanisms underlying this activity are unknown. In this study, we evaluated the effect of SAHA on the expression of GluN2A, GluN2B (NMDA receptor subunits), (p-)AMPK, and ΔFos proteins which are an integral part of the signal transduction pathways in the brain and also involved in the pathophysiology of depression as well as the mechanism of antidepressant action. We also measured the concentration of malondialdehyde (MDA - a product of lipid peroxidation). The study was carried out in the prefrontal cortex (PFC) and hippocampus (Hp), brain regions implicated in depression. Although SAHA induced changes in the expression of all the proteins and MDA concentration, the effects differed depending on the drug dose, time, and brain structure involved. SAHA reduced MDA concentration and significantly increased p-AMPK protein expression, indicating it may prevent oxidative stress. SAHA also increased the levels of HDAC3 and NMDA subunits (GluN2A and GluN2B), implying it is neuroprotective and may play a crucial role in synaptic plasticity. Moreover, ΔFosB and FosB levels were significantly elevated, suggesting that SAHA may modulate learning and memory processes. Overall, the data indicate that the Hp might play a pivotal role in the mechanism of action of SAHA, hinting at novel mechanisms it play in the antidepressant and neuroprotective effects of SAHA.


Assuntos
Antidepressivos/administração & dosagem , Hipocampo/efeitos dos fármacos , Inibidores de Histona Desacetilases/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Vorinostat/administração & dosagem , Animais , Hipocampo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/metabolismo
17.
Neurochem Int ; 150: 105193, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34571049

RESUMO

Imipramine belongs to a group of tricyclic antidepressants (TCAs). It has been also documented that its antidepressant activity connects with the modulation of cytosolic phospholipase A2 (cPLA2) and arachidonic acid (AA) turnover. Through this mechanism, imipramine can indirectly modify glutamate (Glu) transmission. Additionally, it has been shown that chronic treatment with imipramine results in the upregulation of the metabotropic glutamate receptor subtype 5 (mGlu5 receptor) in the hippocampus of rats. Our previous study revealed that manipulation of the AA pathway via inhibition of cyclooxygenase-2 (COX-2) by selective COX-2 inhibitor (NS398) could effectively modulate the behavior of mice treated with imipramine. Here, we hypothesized that COX-2 inhibition could similarly to imipramine influence mGlu5 receptor, and thus NS398 can modulate the effect of imipramine on Glu. Moreover, such regulation changes should correspond with alterations in neurotransmission. Increased cPLA activity after imipramine administration may change the activity of the AA pathway and the endocannabinoid metabolism, e.g., 2-Arachidonyl-glycerol (2-AG). To verify the idea, mGlu5 receptor level was investigated in the hippocampus (HC) and prefrontal cortex (PFC) of mice treated for 7 or 14 days with imipramine and/or COX-2 inhibitor: NS398. Western blot and PCR analyses were conducted. Moreover, the excitatory (Glu) and inhibitory (gamma-aminobutyric acid; GABA) neurotransmitters were measured using HPLC and 2-AG using ELISA. A time-dependent change in mGlu5 receptor and COX-2 protein level, COX-2 expression, and 2-AG level in the PFC after imipramine administration was found. Up-regulation of mGlu5 receptor after NS398 was found in HC and PFC. A structure-dependent shift between excitatory vs. inhibitory transmission was detected when NS398 and imipramine were co-administered.


Assuntos
Encéfalo/metabolismo , Ciclo-Oxigenase 2/biossíntese , Imipramina/farmacologia , Nitrobenzenos/farmacologia , Receptor de Glutamato Metabotrópico 5/biossíntese , Sulfonamidas/farmacologia , Regulação para Cima/fisiologia , Inibidores da Captação Adrenérgica/farmacologia , Animais , Antidepressivos Tricíclicos/farmacologia , Encéfalo/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Glutamato Metabotrópico 5/agonistas , Regulação para Cima/efeitos dos fármacos
18.
Neurosci Lett ; 741: 135435, 2021 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-33171212

RESUMO

Our earlier study demonstrated, that antidepressant-like and also cognitive action of MTEP, a metabotropic glutamate receptor subtype 5 (mGluR5) antagonist, was influenced by cyclooxygenase-2 (COX-2) inhibition in mice. We detected a decrease in the mGluR7 protein level in the hippocampus (HC) of mice co-treated chronically with MTEP and NS398 (a COX-2 inhibitor). We found both antidepressant-like effects and cognitive to be associated with mGlu7 receptor-mediated mechanisms.


Assuntos
Comportamento Animal/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase 2/administração & dosagem , Hipocampo/efeitos dos fármacos , Nitrobenzenos/administração & dosagem , Piridinas/administração & dosagem , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Sulfonamidas/administração & dosagem , Tiazóis/administração & dosagem , Animais , Hipocampo/metabolismo , Hipocampo/fisiologia , Camundongos Knockout , Receptores de Glutamato Metabotrópico/metabolismo
19.
PLoS One ; 15(9): e0239335, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32970734

RESUMO

BACKGROUND: Suicide is a common phenomenon affecting people of all ages. There is a strong relationship between suicidal ideation and depressive disorders. Increasing number of studies suggest that epigenetic modifications in certain brain areas are the main mechanism through which environmental and genetic factors interact with each other contributing to the development of mental disorders. To verify this hypothesis, some epigenetic marks: H3K9/14ac, HDAC2/3, H3K27me2 and Sin3a, as well as p-S421-MeCP2/MeCP2 were examined. On the other hand, BDNF protein level were studied. MATERIALS AND METHODS: Western blot analysis were performed in the frontal cortex (FCx) and hippocampus (HP) of suicide victims (n = 14) and non-suicidal controls (n = 8). The differences between groups and correlations between selected proteins were evaluated using Mann-Whitney U-test and Spearman's rank correlation. RESULTS: Statistically significant decrease in H3K9/14ac (FCx:↓~23%;HP:↓~33%) combined with increase in HDAC3 (FCx:↑~103%;HP:↑~85% in HP) protein levels in suicides compared to the controls was shown. These alterations were accompanied by an increase in H3K27me2 (FCx:↑45%;HP:↑~59%) and Sin3a (HP:↑50%) levels and decrease in p-S421-MeCP2/MeCP2 protein ratio (HP:↓~55%;FCx:↓~27%). Moreover, reduced BDNF protein level (FCx:↓~43%;HP:↓~28%) in suicides was observed. On the other hand, some significant correlations (e.g. between H3K9/14ac and HDAC2 or between BDNF and p-S421-MeCP2/MeCP2) were demonstrated. CONCLUSIONS: Our findings confirm the role of epigenetic component and BDNF protein in suicidal behavior. Lowered BDNF protein level in suicides is probably due to decrease in histone acetylation and increased level of factors related with deacetylation and methylation processes, including MeCP2 factor, which may operate bidirectionally (an activator or inhibitor of transcription).


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Epigênese Genética , Hipocampo/metabolismo , Suicídio , Adolescente , Adulto , Estudos de Casos e Controles , Lobo Frontal/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Pessoa de Meia-Idade , Complexo Correpressor Histona Desacetilase e Sin3/genética , Complexo Correpressor Histona Desacetilase e Sin3/metabolismo , Adulto Jovem
20.
Pharmacol Rep ; 70(2): 398-408, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29456074

RESUMO

Major depressive disorder (MDD) represents approximately 40% of the disability caused by mental illnesses globally. The poorly understood pathophysiology and limited efficiency of pharmacological treatment (based primarily on the principles of the monoaminergic hypothesis) make depression a serious medical, public and socio-economical problem. An increasing number of studies suggest that epigenetic modifications (alterations in gene expression that are not due to changes in DNA sequence) in certain brain regions and neural circuits represent a key mechanism through which environmental factors interact with individual's genetic constitution to affect risk of mental disorders. Accordingly, chromatin-based epigenetic regulation seems to be a promising direction for the development of new, more effective antidepressant drugs. Recently, several inhibitors of histone deacetylases (HDAC) have been extensively studied in the context of antidepressant action. So far, none of them has been used to treat depression in humans due to the low selectivity for specific HDAC isoforms, and consequently, a risk of serious adverse events. In this review, we focus on the HDAC inhibitors (HDACi) with the greatest antidepressant efficacy and their activity in the preclinical studies. Moreover, we discuss their potential therapeutic usefulness in depression and the main limitations.


Assuntos
Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Animais , Transtorno Depressivo Maior/metabolismo , Epigênese Genética/efeitos dos fármacos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA